화재의 초기 검출은 인명과 재화의 손실을 최소화하기 위한 중요한 요소이다. 불꽃과 연기를 신속하면서 동시에 검출해야 하며 이를 위해 영상 기반의 화재 검출에 관한 연구가 다양하게 진행되고 있다. 기존의 화재 검출은 불꽃과 연기의 특징을 추출하기 위해 여러 알고리즘을 거쳐서 화재의 검출 유무를 판단하므로 연산량이 많이 소모되었으나, 딥러닝 알고리즘인 합성곱 신경망을 이용 하면 별도의 과정이 생략되므로 신속하게 검출할 수 있다. 본 논문에서는 선박 기관실에서 화재 영상을 녹화한 데이터로 실험을 수행 하였다. 불꽃과 연기의 특징을 외각 상자로 추출한 후 합성곱 신경망 중 하나인 욜로(YOLO)를 이용하여 학습하고 결과를 테스트하였 다. 실험 결과를 검출률, 오검출률, 정확도로 평가하였으며 불꽃은 0.994, 0.011, 0.998, 연기는 0.978, 0.021, 0.978을 나타내었고, 연산시간 은 0.009s를 소모됨을 확인하였다.
Early detection of fire is an important measure for minimizing the loss of life and property damage. However, fire and smoke need to be simultaneously detected. In this context, numerous studies have been conducted on image-based fire detection. Conventional fire detection methods are compute-intensive and comprise several algorithms for extracting the flame and smoke characteristics. Hence, deep learning algorithms and convolution neural networks can be alternatively employed for fire detection. In this study, recorded image data of fire in a ship engine room were analyzed. The flame and smoke characteristics were extracted from the outer box, and the YOLO (You Only Look Once) convolutional neural network algorithm was subsequently employed for learning and testing. Experimental results were evaluated with respect to three attributes, namely detection rate, error rate, and accuracy. The respective values of detection rate, error rate, and accuracy are found to be 0.994, 0.011, and 0.998 for the flame, 0.978, 0.021, and 0.978 for the smoke, and the calculation time is found to be 0.009 s.