Invasive species compete with native species and damage ecosystems. Due to their limited resources, island ecosystems are vulnerable to impacts of invasive species. In the Deokjeok archipelago, South Korea, invasive sika deer (Cervus nippon ssp. taiouanus) introduced for economic purposes are causing harm through severe browsing. This study aimed to evaluate long-term browsing impacts of invasive deer by tracking vegetation index changes from 1986 to 2020 with Landsat satellite imagery and the LandTrendr algorithm. We compared vegetation index trend using Sen’s slope and Disturbance/Recovery area ratio (D/R ratio) between Gureop-do, where these deer were introduced with rapid population increase, and Deokjeok-do, Baega-do, and Mungapdo where these deer have not been introduced yet. Results showed a decreasing trend of the vegetation index in Gureop-do, while other islands without those deer increased. The cumulative D/R ratio on Gureop-do was 212.44%, meaning that disturbance exceeded the recovery area more than two-fold. In contrast, the D/R ratios for other islands remained under 50%. Sen’s slope and t-test showed a significant decrease of NDVI in Gureop-do after deer introduction in 2000. By quantifying the browsing impact of invasive ungulates in island ecosystems using satellite imagery, time and costeffective strategies for invasive species monitoring are provided.
본 연구는 딥러닝 영상 재구성 기법을 적용한 8개의 뇌질환군의 감마나이프 수술 계획용 자기공명영상(magnetic resonance imaging, MRI)의 유용성을 알아보고자 하였다. 연구 방법은 전이성 뇌종양, 뇌동정맥 기형, 수막종, 뇌하수체선종, 삼차신경통, 청신경초종, 맥락얼기 유두종, 해면상 혈관종, 총 8개의 질병을 진단받은 사람들의 T2 강조 영상(T2 weighted imaging, T2WI), 조영증강 T1 강조영상(contrast enhancement T1 weighted imaging, CE-T1WI)의 방법으로 검사한 MRI 영상을 SwiftMR을 이용하여 딥러닝 영상 재구성 기법인 디노이징(denoising)과 초해상도(super resolution)가 적용된 영상을 획득하였다. 이에 대한 성능 평가는 최대 신호대잡음비(peak signal to noise ratio, PSNR), 구조적 유사도(structural similarity index measure, SSIM), 감마나이프 방사선수술(gamma knife radiosurgery, GKRS)의 좌표계로 평가하였다. 그 결과, 원본영상을 기반으로 영상 품질이 개선된 영상의 PSNR과 SSIM은 높은 수치를 나타냄으로써 MRI 영상의 재구성이 문제없이 이루어졌고, GKRS의 수술 좌표계 또한 변화를 보이지 않았다. 결론적으로 딥러닝 영상 재구성 기법은 영상 품질 향상과 영상 보존에서 뛰어난 성능을 보임과 동시에 좌표계도 변화를 보이지 않아서, 딥러닝 영상 재구성 기법은 감마나이프 수술 계획에 유용하게 사용할 수 있는 기법임을 확인하였다.
The purpose of this study is to develop a timely fall detection system aimed at improving elderly care, reducing injury risks, and promoting greater independence among older adults. Falls are a leading cause of severe complications, long-term disabilities, and even mortality in the aging population, making their detection and prevention a crucial area of public health focus. This research introduces an innovative fall detection approach by leveraging Mediapipe, a state-of-the-art computer vision tool designed for human posture tracking. By analyzing the velocity of keypoints derived from human movement data, the system is able to detect abrupt changes in motion patterns, which are indicative of potential falls. To enhance the accuracy and robustness of fall detection, this system integrates an LSTM (Long Short-Term Memory) model specifically optimized for time-series data analysis. LSTM's ability to capture critical temporal shifts in movement patterns ensures the system's reliability in distinguishing falls from other types of motion. The combination of Mediapipe and LSTM provides a highly accurate and robust monitoring system with a significantly reduced false-positive rate, making it suitable for real-world elderly care environments. Experimental results demonstrated the efficacy of the proposed system, achieving an F1 score of 0.934, with a precision of 0.935 and a recall of 0.932. These findings highlight the system's capability to handle complex motion data effectively while maintaining high accuracy and reliability. The proposed method represents a technological advancement in fall detection systems, with promising potential for implementation in elderly monitoring systems. By improving safety and quality of life for older adults, this research contributes meaningfully to advancements in elderly care technology.
본 연구는 K-공간 기반 노이즈 제거 딥러닝(DL)을 이용한 확산강조영상(DWI)의 유용성을 평가하고자 하였다. 연구 를 위해 간세포암으로 확진된 환자 30명을 대상으로 DL 기법 적용 전후의 DWI에 각각 확산경사자계(b-value) 50 과 800을 적용하여 영상화하였다. 획득한 영상에서 간세포암 조직과 정상 간 조직에 관심 영역을 설정하여 b50, b800에서의 신호대잡음비(SNR)와 대조대잡음비(CNR)를 측정하였고 두 명의 관찰자가 각 영상에서 간세포암 조직 을 측정하여 겉보기확산계수(ADC) 값을 계산하였다. 모든 측정값의 평가는 T-검정(T-test)을 사용하여 상관관계 를 평가하였으며 급내상관계수(ICC)를 이용하여 두 관찰자 간 ADC 측정값의 일치도와 신뢰도를 평가하였다. 연구 결과, DL 적용 후 영상에서 SNR과 CNR이 모두 높아졌으며 통계적으로 유의한 것으로(p<0.05) 나타났다. 또한, 간세포암의 ADC 값은 통계적으로 유의하지 않은 것으로(p<0.05) 나타났지만 두 관찰자 간 ADC 측정값의 일치에 대한 신뢰도는 상관계수가 0.75 이상으로 우수하였고, 간세포암의 고유한 성질로 인해 ADC 값의 변화가 적은 점을 고려한다면 충분히 유의한 결과라고 볼 수 있다. 결론적으로 DL DWI은 영상 획득 시간을 단축하면서도 기존 DWI 보다 질적으로 더 나은 영상을 획득했다. 향후 다양한 MRI 검사에 DL이 적용된다면 더욱 유용하게 사용될 것으로 사료 된다.
자기공명영상은 인체 내부 구조와 병변을 비침습적으로 시각화하는 핵심 의료 영상 기법으로 자리 잡고 있으며, 특히 신경계 및 심혈관계 질환과 같은 복잡한 질병의 진단에서 필수적인 도구로 활용되고 있다. 기존의 자기공명영상 시스 템은 영상의 해상도와 신호대잡음비에서 한계가 있었으나, 최근의 기술 발전은 이러한 한계를 극복하고 진단 정확성 을 높이는 방향으로 나아가고 있다. 고자기장 자기공명영상 시스템의 도입은 해상도와 신호대잡음비를 개선하는 데 기여하고 있으며, 병렬 영상 기법은 촬영 속도를 향상시키면서도 영상 품질의 손실을 최소화한다. 또한, 압축 센싱 (compressed sensing) 기술은 데이터 획득 시간을 줄여 촬영 효율성을 높이는 데 중요한 역할을 하고 있다. 최근 인공지능(AI)의 발전으로, 자기공명영상 데이터에서 초해상도 복원(super-resolution) 및 노이즈 제거와 같은 영상 후처리 기술이 획기적으로 향상되었다. 인공지능 기반의 영상 향상 기술은 저해상도 데이터를 고해상도로 변환하고, 촬영 과정에서 발생할 수 있는 왜곡과 노이즈를 효과적으로 제거하여, 더 정확하고 명확한 진단 영상을 제공한다. 이러한 발전은 단순히 영상의 품질을 높이는 것을 넘어, 임상 진단의 정확성과 효율성을 크게 향상시키고 있으며, 특히 제한된 촬영 시간을 요구하는 응급 상황에서 유용성이 두드러진다. 본 논문에서는 자기공명영상 촬영 기법의 최신 발전과 인공지능 기반 영상 향상 기술의 동향을 여러모로 분석하고, 이들의 임상적 유용성을 조명함으로써 고해 상도 자기공명영상이 의료 분야에서 가지는 의미와 향후 발전 방향을 제시하고자 한다.
포장상태 평가를 위한 노면영상 촬영은 라인스캔 방식이 주를 이루고 있다. 라인스캔 특성 상, 조사환경이나 장비특성이 달라질 경 우 밝기가 상이한 노면영상을 취득할 수 있고 이는 U-net과 같은 픽셀 단위 segmentation 딥러닝 모델의 균열 자동검출 성능에 영향을 미친다. 본 연구에서는 인공지능 검출 모델의 변경 없이 영상의 밝기 최적화와 morphology 연산기법을 노면영상 전·후처리 방법으로 제시하고 그 효과를 분석하였다. 영상 처리를 통해 과다 검출경향을 보인 이상치들이 제거되었으며 정답으로 간주할 수 있는 전문요 원 분석결과인 GT 균열률과의 상관성 또한 향상됨을 확인하였다.
태풍은 지구 시스템 내의 해양-대기-육상 상호작용을 일으키는 매우 중요한 현상으로 특히 태풍의 특성 인자 중 하나인 풍속은 중심 기압, 이동 경로, 해수면 온도 등의 매개변수에 의해 복잡하게 변화하여 실제 관측 자료를 기반으 로 이해하는 것이 중요하다. 2015 개정 교육과정 기반 중등학교 교과서에서 태풍 풍속은 본문 내용 및 삽화의 형태로 제시되고 있어 풍속에 대한 심층적 이해가 가능한 탐구활동이 무엇보다 필요한 실정이다. 본 연구에서는 교수-학습 과 정에서 간단한 조작만으로도 태풍의 풍속을 이해할 수 있도록 그래픽 사용자 인터페이스(GUI)를 기반으로 한 데이터 시각화 프로그램을 개발하였다. 2023년 발생한 태풍 마와르, 구촐, 볼라벤의 천리안 위성 2 A호 RGB (Red-Green-Blue) 영상 자료를 입력 자료로 활용하였다. 태풍 주변의 구름 이동 좌표를 입력하여 태풍의 풍속을 산출하고 태풍 중심 기 압, 폭풍 반경, 최대 풍속 등의 매개 변수를 입력하여 태풍 풍속 분포를 시각화 할 수 있도록 설계하였다. 본 연구에서 개발된 GUI 기반 프로그램은 천리안 위성 2 A호로 관측 가능한 태풍에 대해 오류 없이 적용 가능하며 교과서의 시공 간적 한계를 벗어난 실제 관측 자료 기반의 과학탐구활동이 가능하다. 학생과 교사는 별도의 유료 프로그램 및 전문적 인 코딩 지식이 없어도 실제 관측 자료를 수집, 처리, 분석, 시각화하는 과정을 경험할 수 있으며, 이를 통해 미래 정보 화 사회에서의 필수 역량인 디지털 소양을 함양시킬 수 있을 것으로 기대된다.
운량은 천체 관측을 지속하는 데에 중요한 요소 중 하나이다. 과거에는 관측자가 날씨를 직접 판단할 수밖에 없 었으나, 원격 및 자동 관측 시스템의 개발로 관측자의 역할이 상대적으로 줄어들었다. 또한 구름의 다양한 형태와 빠른 이동 때문에 자동으로 운량을 판단하는 것은 쉽지 않다. 이 연구에서는 기계학습 기반의 파이썬 모듈인 “cloudynight” 을 밀양아리랑우주천문대의 전천 영상에 적용하여 운량을 모니터링하는 프로그램을 개발하였다. 전천 영상을 하위 영역 으로 나누어 각 39,996개 영역의 16개의 특징을 학습하여 기계학습 모델을 생성하였다. 검증 표본에서 얻은 F1 점수는 0.97로, 기계학습 모델이 우수한 성능을 가짐을 보여준다. 운량(“Cloudiness”)은 전체 하위 영역 개수 중 구름으로 식별 된 하위 영역 개수의 비율로 계산하며, 운량이 지난 30분 동안 0.6을 초과할 때 관측을 중단하도록 자동 관측 프로그 램 규칙을 정하였다. 이 규칙을 따를 때, 기계학습 모델이 운량을 오판하여 관측에 영향을 미치는 경우는 거의 발생하 지 않았다. 본 기계학습 모델을 통하여, 밀양아리랑우주천문대 0.7 m 망원경의 성공적인 자동 관측을 기대한다.
작물의 스트레스 조기 진단은 농업에 있어 빠른 대응을 가능하게 해 피해를 경감시킬 수 있어 중요한 기술이다. 기존의 스트레스 진단이 가진 파괴적인 형식의 시료 채집과 양분 분석에 많은 노동력을 필요로 한다는 단점 극복을 위해 새로운 기술 개발이 필요하다. 미래에는 대단위 영상을 이용한 생육 진단 기술에 대한 수요가 높아질 것으로 예상되어 이를 이용한 연구를 진행하였다. 본 연구는 2023년 경상남도 밀양시에 위치한 국립식량과학원 실험 포장에서 수행되었으며, 무인항공기(UAV)를 이용하여 양분 결핍 처리(관행시비, 질소 결핍, 인 결핍, 칼륨 결핍, 무비)에 따른 벼의 생육을 조사했다. UAV를 이용해 생육 기간 중 총 6회에 걸쳐 포장을 촬영하였고, 영상을 기반으로 11개의 식생 지수를 산출하여 기계학습을 통해 양분 결핍을 진단하는 모델을 구축하여 평가했다. 연구 결과에 따르면, 엽록소 함량과 관련된 지수인 NDRE (Normalized Difference Red Edge)가 가장 높은 중요도를 나타내어 벼의 양분 상태를 효과적으로 진단하는 데 유용하다는 것을 확인하였다. 6개의 각 단계별로 모델을 평가하였을 때 모든 단계에서 accuracy가 0.7 이상으로 나타났다. 조기 진단을 위해 첫 촬영 날짜인 7월 5일의 자료로 모델을 만들어 다른 회차에 적용하여 모델의 성능을 평가한 결과, 5개의 모든 단계에서 0.9 이상의 accuracy를 얻었다. 종합적으로, UAV 영상 기반의 식생 지수를 활용한 양분 결핍 진단은 벼의 생육을 조기에 예측하는 데 효과적이며, 이는 정밀 농업 분야에서 시간과 노동을 절감하고 양분 관리를 개선하는 데 도움이 될 것으로 기대된다.
This study was conducted to develop a model for predicting the growth of kimchi cabbage using image data and environmental data. Kimchi cabbages of the ‘Cheongmyeong Gaual’ variety were planted three times on July 11th, July 19th, and July 27th at a test field located at Pyeongchang-gun, Gangwon-do (37°37′ N 128°32′ E, 510 elevation), and data on growth, images, and environmental conditions were collected until September 12th. To select key factors for the kimchi cabbage growth prediction model, a correlation analysis was conducted using the collected growth data and meteorological data. The correlation coefficient between fresh weight and growth degree days (GDD) and between fresh weight and integrated solar radiation showed a high correlation coefficient of 0.88. Additionally, fresh weight had significant correlations with height and leaf area of kimchi cabbages, with correlation coefficients of 0.78 and 0.79, respectively. Canopy coverage was selected from the image data and GDD was selected from the environmental data based on references from previous researches. A prediction model for kimchi cabbage of biomass, leaf count, and leaf area was developed by combining GDD, canopy coverage and growth data. Single-factor models, including quadratic, sigmoid, and logistic models, were created and the sigmoid prediction model showed the best explanatory power according to the evaluation results. Developing a multi-factor growth prediction model by combining GDD and canopy coverage resulted in improved determination coefficients of 0.9, 0.95, and 0.89 for biomass, leaf count, and leaf area, respectively, compared to single-factor prediction models. To validate the developed model, validation was conducted and the determination coefficient between measured and predicted fresh weight was 0.91, with an RMSE of 134.2 g, indicating high prediction accuracy. In the past, kimchi cabbage growth prediction was often based on meteorological or image data, which resulted in low predictive accuracy due to the inability to reflect on-site conditions or the heading up of kimchi cabbage. Combining these two prediction methods is expected to enhance the accuracy of crop yield predictions by compensating for the weaknesses of each observation method.
Image mosaicking is one of the basic and important technologies in the field of application using images. The key of image mosaicking is to extract seamlines from a joint image. The method proposed in this paper for image mosaicking is as follows. The feature points of the images to be joined are extracted and the joining form between the two images is identified. A reference position for detection the seamlines were selected according to the joint form, and an image pyramid was created for efficient image processing. The outlines of the image including buildings and roads are extracted from the overlapping area with low resolution, and the seamlines are determined by considering the components of the outlines. Based on this, the seamlines in the high-resolution image was re-searched and finally the seamline for image mosaicking was determined. In addition, in order to minimize color distortion of the image with the determined seamline, a method of improving the quality of the mosaic image by fine correction of the mosaic area was applied. It was confirmed that the quality of the seamline extraction results applying the method proposed was reasonable.
Degenerative arthritis is a common joint disease that affects many elderly people and is typically diagnosed through radiography. However, the need for remote diagnosis is increasing because knee pain and walking disorders caused by degenerative arthritis make face-to-face treatment difficult. This study collects three-dimensional joint coordinates in real time using Azure Kinect DK and calculates 6 gait features through visualization and one-way ANOVA verification. The random forest classifier, trained with these characteristics, classified degenerative arthritis with an accuracy of 97.52%, and the model's basis for classification was identified through classification algorithm by features. Overall, this study not only compensated for the shortcomings of existing diagnostic methods, but also constructed a high-accuracy prediction model using statistically verified gait features and provided detailed prediction results.