광학 현미경 영상 기반 시간 분해능이 향상된 비지역적 평균 노이즈 제거 알고리즘 가능성 연구
본 연구의 목적은 시간 분해능이 향상된 비지역적 평균 (fast non local means, FNLM) 노이즈 제거 알고리 즘을 모델링하여 광학 현미경 영상에서의 적용 가능성을 확인하는 것이다. 이를 위해 실제 흰쥐 (mouse)의 첫째어금니 치아를 사용하여 영상을 획득한 후 기존에 널리 사용되고 있는 노이즈 제거 알고리즘과 제안 하는 FNLM 알고리즘을 각각 적용하여 비교하였다. 정량적 평가는 대조도 대 잡음비 (contrast to noise ratio, CNR), 변동계수 (coefficient of variation, COV), 그리고 최근에 개발된 no reference 기반의 방법인 natural ima ge quality evaluator (NIQE)와 Blind/referenceless image spatial quality evaluator (BRISQUE)를 사용하였다. 결과적으로 모든 정량적 평가 인자에서 제안하는 FNLM 노이즈 제거 알고리즘이 가장 우수한 값을 나타내었다. 특히나 치아의 전체적인 형태학적 영상을 분석할 수 있는 NIQE와 BRISQUE 인자는 원본영상에 비하여 각각 1.14와 1.12배 향상됨을 확인할 수 있었다. 결론적으로 소동물 치아 광학 현미경 영상에서의 FNLM 노이즈 제거 알고리즘의 유용성 및 가능성을 증명하였다.
The aim of this study was to design fast non local means (FNLM) noise reduction algorithm and to confirm its application feasibility in light microscopic image. For that aim, we acquired mouse first molar image and compared between previous widely used noise reduction algorithm and our proposed FNLM algorithm in acquired light microscopic image. Contrast to noise ratio, coefficient of variation, and no reference-based evaluation parameter such as natural image quality evaluator (NIQE) and blind/referenceless image spatial quality evaluator (BRISQUE) were used in this study. According to the result, our proposed FNLM noise reduction algorithm can achieve excellent result in all evaluation parameters. In particular, it was confirmed that the NIQE and BRISQUE evaluation parameters for analyzing the overall morphologcal image of the tooth were 1.14 and 1.12 times better than the original image, respectively. In conclusion, we demonstrated the usefulness and feasibility of FNLM noise reduction algorithm in light microscopic image of small animal tooth.