This study examines the controlling role of synoptic disturbances on PM10 spring variability in the Korean Peninsula by using empirical orthogonal function (EOF) and back trajectory analyses. Three leading EOF modes are identified, and a lead-lag analysis suggests that PM10 variabilities be closely related to the synoptic weather systems. The first EOF shows the spatially homogeneous distribution of PM10, which is influenced by travelling anticyclonic disturbance with negative precipitation and descending motion. The second and third modes exhibit the dipole structures of PM10, being associated with propagating cyclones. Furthermore, the back-trajectory analysis suggests that the transport of pollutants by anomalous winds associated with synoptic disturbances also contribute to the altered PM10 concentration. Hence, a substantial synoptic control should be considered in order to fully understand the PM10 spatiotemporal variability.