논문 상세보기

SOLAR MICROWAVE BURSTS AND ELECTRON KINETICS KCI 등재 SCOPUS

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/387723
구독 기관 인증 시 무료 이용이 가능합니다. 4,200원
천문학회지 (Journal of The Korean Astronomical Society)
한국천문학회 (Korean Astronomical Society)
초록

Solar flares present a number of radiative characteristics indicative of kinetic processes of high energy particles. Proper understanding of the kinetic processes, however, relies on how well we can separate the acceleration from transport characteristics. In this paper, we discuss microwave and hard X-ray bursts as a powerful tool in investigating the acceleration and transport of high energy electrons. After a brief review of the studies devoted to the kinetic process of solar flare particles, we cast them into a simple formulation which allows us to handle the injection, trap, and precipitation of flare electrons self-consistently. The formulation is then taken as a basis for interpreting and analyzing a set of impulsive and gradual bursts occurred on 2001 April 6 observed with the Owens Valley Solar Array, and HXT/WBS onboard Yohkoh satellite. We quantify the acceleration, trap, and precipitation processes during each burst in terms of relevant time scales, and also determine ambient density and magnetic field. Our result suggests that it should be the acceleration property, in particular, electron pitch angle distribution, rather than the trap condition, that is mainly responsible for the distinctive properties of the impulsive and gradual flares.

저자
  • JEONGWOO LEE(Physics Department, New Jersey Institute of Technology)
  • SU-CHAN BONG(Astronomy Program, SEES, Seoul National University)
  • HONG SIK YUN(Astronomy Program, SEES, Seoul National University)