간행물

천문학회지 KCI 등재 SCOPUS Journal of The Korean Astronomical Society

권호리스트/논문검색
이 간행물 논문 검색

권호

제36권 제S호 (2003년 6월) 21

1.
2003.06 구독 인증기관 무료, 개인회원 유료
In an early paper Skumanich suggested the existence of a scaling law relating the mean sunspot magnetic field with the square-root of the photospheric pressure. This was derived from an analysis of a variety of theoretical spot models including those by Yun (1968). These were based on the Schliiter-Temesvary (S- T) similarity assumption. To answer criticisms that such modeling may have unphysical (non-axial maxima) solutions, the S-T model was revisited, Moon et al. (1998), with an improved vector potential function. We consider here the consequences of this work for the scaling relation. We show that by dimensionalizing the lateral force balance equation for the S- T model one finds that a single parameter enters as a characteristic value of the solution. This parameter yields Skumanich's scaling directly. Using an observed universal flux-radius relation for dark solar magnetic features (spots and pores) for comparison, we find good to fair agreement with Yun's characteristic value, however the Moon et al. values deviate significantly.
4,000원
2.
2003.06 구독 인증기관 무료, 개인회원 유료
We have studied the magnetic helicity of active regions by using the data from (1) the photo-electric magnetograph of the Okayama Observatory (1983-1995) and (2) the video magnetograph of NAOJ/Mitaka (1992-2000). The latitude distribution of helicity showed a tendency that the regions in the north (south) hemisphere have negative (positive) helicities, respectively, which is already known as the hemispheric sign rule. If we look into the sign of helicity as a function of time, the sign rule was less definite or was reversed sometimes in the sunspot minimum phase. We also studied the relation between the magnetic helicity and the sunspot tilt angles, and found that these two quantities are positively correlated, which is opposite to the expectation of a theoretical model. The implications of this cycle-phase dependence of helicity signs and the correlation between magnetic he Ii city and sunspot tilt angles are discussed.
4,000원
3.
2003.06 구독 인증기관 무료, 개인회원 유료
Observations have indicated that magnetic reconnect ion may occur frequently in the photosphere and chromosphere as well as in the solar corona. The observed features include cancelling magnetic features seen in photospheric magnetograms, and different kinds of small-scale activities such as UV explosive events and EUV jets. By integrating the observed parameters of these features with the Sweet-Parker reconnect ion theory, an attempt is made to clarify the nature of chromospheric magnetic reconnection. Our results suggest that magnetic reconnect ion may be occurring at many different levels of the photosphere and chromosphere without a preferred height and at a faster speed than is predicted by the Sweet-Parker reconnect ion model using the classical value of electric conductivity. Introducing an anomalous magnetic diffusivity 10-100 times the classical value is one of the possible ways of explaining the fast reconnect ion as inferred from observations.
4,000원
4.
2003.06 구독 인증기관 무료, 개인회원 유료
In the present study, we have investigated morphology and evolution of small-scale Ha dynamic features on the quiet sun by analyzing video magnetograms and high resolution Ha images simultaneously taken for 5 hours at Big Bear Solar Observatory on April 18, 1997. From comparisons between time sequential longitudinal magnetograms and Hα images covering 150" × 150", several small-scale Hα dynamic features have been observed at a site of magnetic flux cancellation. A close relationship between such features and cancelling magnetic fluxes has been revealed temporarily and spatially. Our results support that material injection by chromospheric magnetic reconnect ion may be essential in supporting numerous small-scale Hα dynamical absorption features, being in line with recent observational studies showing that material injection by chromospheric magnetic reconnect ion is essential for the formation of solar filaments.
4,000원
5.
2003.06 구독 인증기관 무료, 개인회원 유료
Quiescent solar radiation, at microwave spectral regime, is dominated by gyroresonant and thermal Bremsstrahlung radiations from hot electrons residing in solar active region corona. These radiations are known to provide excellent diagnostics on the coronal temperature, density, and magnetic field, provided that spatially resolved spectra are available from observations. In this paper we present an imaging spectroscopy implemented for a bipolar active region, AR 7912, using the multifrequency interferometric data from the Owens Valley Solar Array (OVSA), as processed with a new imaging technique, so-called Spatio-Spectral Maximum Entropy Method (SSMEM). From the microwave maps at 26 frequencies in the range of 1.2-12.4 GHz at both right- and left-circular polarizations, we construct spatially resolved brightness spectra in every reconstructed pixel of about 2 arcsec interval. These spectra allowed us to determine 2-D distribution of electron temperature, magnetic field of coronal base, and emission measure at the coronal base above the active region. We briefly compare the present result with existing studies of the coronal active regions.
4,000원
6.
2003.06 구독 인증기관 무료, 개인회원 유료
In this paper, we review recent studies on the magnetic helicity changes of solar active regions by photospheric horizontal motions. Recently, Chae(200l) developed a methodology to determine the magnetic helicity change rate via photospheric horizontal motions. We have applied this methodology to four cases: (1) NOAA AR 8100 which has a series of homologous X-ray flares, (2) three active regions which have four eruptive major X-ray flares, (3) NOAA AR 9236 which has three eruptive X-class flares, and (4) NOAA AR 8668 in which a large filament was under formation. As a result, we have found several interesting results. First, the rate of magnetic helicity injection strongly depends on an active region and its evolution. Its mean rate ranges from 4 to 17 × 10 40 Mx2 h-1. Especially when the homologous flares occurred and when the filament was formed, significant rates of magnetic helicity were continuously deposited in the corona via photospheric shear flows. Second, there is a strong positive correlation between the magnetic helicity accumulated during the flaring time interval of the homologous flares in AR 8100 and the GOES X-ray flux integrated over the flaring time. This indicates that the occurrence of a series of homologous flares is physically related to the accumulation of magnetic helicity in the corona by photospheric shearing motions. Third, impulsive helicity variations took place near the flaring times of some strong flares. These impulsive variations whose time scales are less than one hour are attributed to localized velocity kernels around the polarity inversion line. Fourth, considering the filament eruption associated with an X1.8 flare started about 10 minutes before the impulsive variation of the helicity change rate, we suggest that the impulsive helicity variation is not a cause of the eruptive solar flare but its result. Finally, we discuss the physical implications on these results and our future plans.
4,000원
7.
2003.06 구독 인증기관 무료, 개인회원 유료
A white light flare was observed at the limb on 16 August 1989 in He 10830 Å spectra, Hα slit jaw photo-grams, and white light filter-grams of ⋋=5600 Å ±800 Å. The kernels of the white light flare are not spatially related with Ha brightenings, suggesting that the flare energy would be released at the photosphere.
3,000원
8.
2003.06 구독 인증기관 무료, 개인회원 유료
We introduce the two-dimensional spectral observations of solar flares using the Solar Tower Tele-scope of Nanjing University, China. In particular, we introduce three typical events and the methods used to analyze the data. (1) The flare of November 11, 1998, which is a limb flare. We derive the temperature and density within the flaring loop using non-LTE calculations. The results show that the loop top may be hotter and denser than other parts of the loop, which may be a result of magnetic reconnect ion above the loop. (2) The flare of March 10, 2001, which is a white-light flare that shows an emission enhancement at the near infrared continuum. We propose a model of non-thermal electron beam heating plus backwarming to interpret the observations. (3) The flare of September 29, 2002, which shows unusual line asymmetries at one flare kernel. The line asymmetries are caused by an upward moving plasma that is accelerated and heated during the flare development.
4,000원
9.
2003.06 구독 인증기관 무료, 개인회원 유료
There are at least three effects of the non-thermal particle bombardment on the solar atmosphere: (1) non-thermal ionization and excitation; (2) proton-hydrogen charge exchange; (3) impact line polarization. Due to the non-thermal ionization and excitation effects of electron bombardments in flares, Hα line is widely broadened and shows a strong central reversal. Significant enhancements at the line wings of Lyα and Lyβ are also predicted. In the case of proton bombardment, less strong broadening and no large central reversal are expected. However, due to proton-hydrogen charge exchange, the enhancements at the red wings of Lyα and especially of Lyβ lines at the early impulsive phase of flares are significant. Electron beam can also in some cases generates visible and UV continuum emission in white-light flares. However, at the onset phase, a negative 'black' flare may appear in several seconds, due to the increase of the H- opacity. The impact polarization of atomic lines can provide complementary information on the energetic particles, the energy transport and deposit in the solar chromosphere. New results of spectropolarimetric analysis for the major flare on July 23, 2002 are also given in the paper.
4,000원
10.
2003.06 구독 인증기관 무료, 개인회원 유료
Solar flares present a number of radiative characteristics indicative of kinetic processes of high energy particles. Proper understanding of the kinetic processes, however, relies on how well we can separate the acceleration from transport characteristics. In this paper, we discuss microwave and hard X-ray bursts as a powerful tool in investigating the acceleration and transport of high energy electrons. After a brief review of the studies devoted to the kinetic process of solar flare particles, we cast them into a simple formulation which allows us to handle the injection, trap, and precipitation of flare electrons self-consistently. The formulation is then taken as a basis for interpreting and analyzing a set of impulsive and gradual bursts occurred on 2001 April 6 observed with the Owens Valley Solar Array, and HXT/WBS onboard Yohkoh satellite. We quantify the acceleration, trap, and precipitation processes during each burst in terms of relevant time scales, and also determine ambient density and magnetic field. Our result suggests that it should be the acceleration property, in particular, electron pitch angle distribution, rather than the trap condition, that is mainly responsible for the distinctive properties of the impulsive and gradual flares.
4,200원
11.
2003.06 구독 인증기관 무료, 개인회원 유료
Changes in the earth's climate depend on changes in the net sunlight reaching us. The net depends on the sun's output and earth's reflectance, or albedo. Here we develop the limits on the changes in the sun's output in historical times based on the physics of the origin of solar cycle changes. Many have suggested that the sun's output could have been 0.5% less during the Maunder minimum, whereas the variation over the solar cycle is only about 0.1%. The frequencies of solar oscillations (f- and p-modes) evolve through the solar cycle, and provide the most exact measure of the cycle-dependent changes in the sun. But precisely what are they probing? The changes in the sun's output, structure and oscillation frequencies are driven by some combination of changes in the magnetic field, thermal structure and velocity field. It has been unclear what is the precise combination of the three. One way or another, this thorny issue rests on an understanding of the response of the solar structure to increased magnetic field, but this is complicated. Thus, we do not understand the origin of the sun's irradiance increase with increasing magnetic activity. Until recently, it seemed that an unphysically large magnetic field change was required to account for the frequency evolution during the cycle. However, the problem seems to have been solved (Dziembowski, Goode & Schou 2001) using f-mode data on size variations of the sun. From this and the work of Dziembowski & Goode (2003), we suggest that in historical times the sun couldn't be much dimmer than it is at activity minimum.
4,000원
12.
2003.06 구독 인증기관 무료, 개인회원 유료
There are terrestrial signatures of the solar activity cycle in ice core data (Ram & Stoltz 1999), but the variations in the sun's irradiance over the cycle seem too small to account for the signature (Lean 1997; Goode & Dziembowski 2003). Thus, one would expect that the signature must arise from an indirect effect(s) of solar activity. Such an indirect effect would be expected to manifest itself in the earth's reflectance. Further, the earth's climate depends directly on the albedo. Continuous observations of the earthshine have been carried out from Big Bear Solar Observatory since December 1998, with some more sporadic measurements made during the years 1994 and 1995. We have determined the annual albedos both from our observations and from simulations utilizing the Earth Radiation Budget Experiment (ERBE) scene model and various datasets for the cloud cover, as well as snow and ice cover. With these, we look for inter-annual and longer-term changes in the earth's total reflectance, or Bond albedo. We find that both our observations and simulations indicate that the albedo was significantly higher during 1994-1995 (activity minimum) than for the more recent period covering 1999-2001 (activity maximum). However, the sizes of the changes seem somewhat discrepant. Possible indirect solar influences on the earth's Bond albedo are discussed to emphasize that our earthshine data are already sufficiently precise to detect, if they occur, any meaningful changes in the earth's reflectance. Still greater precision will occur as we expand our single site observations to a global network.
4,000원
13.
2003.06 구독 인증기관 무료, 개인회원 유료
Various attempts have been made to explain the: pronounced seasonal and universal time (UT) variations of geomagnetic indices. As one of such attempts, we analyze the hourly-averaged auroral electroject indices obtained during the past 20 years. The AU and AL indices maximize during summer and equinoctial months, respectively. By normalizing the contribution of the solar conductivity enhancement to the AU index, or to the eastward electrojet, it is found that the AU also follows the same semiannual variation pattern of the AL index, suggesting that the electric field is the main modulator of the semiannual magnetic variation. The fact that the variation pattern of the yearly-mean AU index follows the mirror image of the AL index provides another indication that the electric field is the main modulator of magnetic disturbance. The pronounced UT variations of the auroral electrojet indices are also noted. To determine the magnetic activity dependence, the probability of recording a given activity level of AU and AL during each UT is examined. The UT variation of the AL index, thus obtained, shows a maximum at around 1200-1800 UT and a minimum around 0000-0800 UT particularly during winter. It is closely associated with the rotation of the geomagnetic pole around the rotational axis, which results in the change of the solar-originated ionospheric conductivity distribution over the polar region. On the other hand the UT variation is prominent during disturbed periods, indicating that the latitudinal mismatch between the AE stations and the auroral electrojet belt is responsible for it. Although not as prominent as the AL index, the probability distribution of the AU also shows two UT peaks. We confirm that the Dst index shows more prominent seasonal variation than the AE indices. However, the UT variation of the Dst index is only noticeable during the main phase of a magnetic storm. It is a combined result of the uneven distribution of the Dst stations and frequent developments of the partial ring current and substorm wedge current preferentially during the main phase.
4,000원
14.
2003.06 구독 인증기관 무료, 개인회원 유료
The magnetosphere is often perturbed by impulsive input such as interplanetary shocks and solar wind discontinuities. We study how these initial perturbations are propagating within the magnetosphere over various latitude regions by adopting a three-dimensional numerical dipole model. We examine the wave propagation on a meridional plane in a time-dependent manner and compare the numerical results with multi-satellite and ground observations. The dipole model is used to represent the plasmasphere and magnetosphere with a realistic Alfven speed profile. It is found that the effects of refraction, which result from magnetic field curvature and inhomogeneous Alfven speed, are' found to become important near the plasmapause. Our results show that, when the disturbances are assumed at the subsolar point of the dayside magnetosphere, the travel time becomes smaller to the polar ionosphere compared to the equatorial ionosphere.
4,000원
15.
2003.06 구독 인증기관 무료, 개인회원 유료
We report the results of the ionospheric measurement obtained from the instruments on board the Korea Multi-Purpose Satellite - 1 (KOMPSAT-l). We observed a deep electron density trough in the nighttime equatorial ionosphere during the great magnetic storm on 15 July 2000. We attribute the phenomena to the up-lifted F-layer caused by the enhanced eastward electric field, while the spacecraft passed underneath the layer. We also present the results of our statistical study on the equatorial plasma bubble formation. We confirm the previous results regarding its seasonal and longitudinal dependence. In addition, we obtain new statistical results of the bubble temperature variations. The whole data set of measurement for more than a year is compared with the International Reference Ionosphere (IRI). It is seen that the features of the electron density and temperature along the magnetic equator are more prominent in the KOMPSAT-l observations than in the IRI model.
4,000원
16.
2003.06 구독 인증기관 무료, 개인회원 유료
Pre-launch calibration data have been analyzed for evaluating the point spread function (PSF) of Yohkoh Soft X-ray Telescope (SXT). Especially, it is found crucial that the effect of undersampling should be treated properly. The best fit solution of the SXT PSF, which is modeled by an elliptical Moffat function, has been derived by the comparison with the ground experiment data. In order to examine the off-axis variation of the SXT PSF, we need to define in advance the location of the optical axis on the CCD. According to the previous studies, the off-axis variation of effective area (the vignetting function) may be approximated either by two non-concentric cones or by a cone with some flat distortions. There have been, however, no fully approved representations for the SXT vignetting effect. The effect of the shift of the optical axis from the geometrical center of the telescope is investigated by numerical simulation. It is revealed from our study that the full width at half maximum (FWHM) of the SXT PSF stays nearly constant within an error bound over the central area of the CCD where the solar disk is located.
4,000원
17.
2003.06 구독 인증기관 무료, 개인회원 유료
New Jersey Institute of Technology (NJIT), in collaboration with the University of Hawaii (UH), is upgrading Big Bear Solar Observatory (BBSO) by replacing its principal, 65 cm aperture telescope with a modern, off-axis 1.6 m clear aperture instrument from a 1.7 m blank. The new telescope offers a significant incremental improvement in ground-based infrared and high angular resolution capabilities, and enhances our continuing program to understand photospheric magneto-convection and chromospheric dynamics. These are the drivers for what is broadly called space weather - an important problem, which impacts human technologies and life on earth. This New Solar Telescope (NST) will use the existing BBSO pedestal, pier and observatory building, which will be modified to accept the larger open telescope structure. It will be operated together with our 10 inch (for larger field-of-view vector magnetograms, Ca II K and Ha observations) and Singer-Link (full disk Hα, Ca II K and white light) synoptic telescopes. The NST optical and software control design will be similar to the existing SOLARC (UH) and the planned Advanced Technology Solar Telescope (ATST) facility led by the National Solar Observatory (NSO) - all three are off-axis designs. The NST will be available to guest observers and will continue BBSO's open data policy. The polishing of the primary will be done in partnership with the University of Arizona Mirror Lab, where their proof-of-concept for figuring 8 m pieces of 20 m nighttime telescopes will be the NST's primary mirror. We plan for the NST's first light in late 2005. This new telescope will be the largest aperture solar telescope, and the largest aperture off-axis telescope, located in one of the best observing sites. It will enable new, cutting edge science. The scientific results will be extremely important to space weather and global climate change research.
4,000원
18.
2003.06 구독 인증기관 무료, 개인회원 유료
Solar radio astronomy is about to undergo a revolution with the advent of a new radio synthesis array, the Frequency Agile Solar Radiotelescope (FASR). The array will consist of more than 100 antennas (5000 baselines), and will be designed to meet the special challenges of solar imaging. It will produce high-quality images at hundreds of frequencies in the range 20 MHz-24 GHz. We briefly describe the plans for the instrument, and then concentrate on the range of science that is expected to be addressed, using current state-of-the-art solar radio observations and modeling to illustrate FASR performance. We end with an assessment of the current status of the instrument, and plans for future.
4,000원
19.
2003.06 구독 인증기관 무료, 개인회원 유료
LIST is the Lyman-α Imaging Solar Telescope, a project funded by the Korean government to fly on the second Korean Science and Technology research Satellite (STSat-2) due to launch in December 2005. The Principal Investigator is Dr. Minhwan Jang of Kyung-Hee University and of the Space Payload Research Center (SPARC), a consortium of Korean universities and institutions formed to develop scientific research projects in space. The purpose of the LIST project is to design, build, and operate an instrument on STSat-2 which will make images of the Sun from Earth orbit at the wavelength of the Hydrogen Lyman-a emission line at 121.6 nm. LIST has a simple design concept comprised of a small telescope to image the full disk of the Sun onto a CCD detector and a set of filters to isolate the 121.6 nm wavelength.
4,000원
20.
2003.06 구독 인증기관 무료, 개인회원 유료
During the past decade the world solar physics community has made significant progress in understanding the Sun and its interaction with the heliosphere and Earth's magnetosphere. NASA in coordination and cooperation with many other countries has had impressive results with the SOHO, YOHKOH, POLAR, GEOTAIL, etc spacecraft. These successes have given us a sound foundation to proceed into the new century. The two current main efforts in the U.S. are the Solar Terrestrial Probes (STP) and Living With A Star (LWS) programs. The STP program is basically science driven with new missions being selected on the basis of basic science discovery. The LWS program is focused on understanding the basic physics of solar variability and its effects on Earth systems. The current plans for these two programs are discussed.
3,000원
1 2