간행물

천문학회지 KCI 등재 SCOPUS Journal of The Korean Astronomical Society

권호리스트/논문검색
이 간행물 논문 검색

권호

제42권 제3호 (2009년 6월) 5

1.
2009.06 구독 인증기관 무료, 개인회원 유료
We propose a diagnostic that can resolve the planet/binary degeneracy of central perturbations in caustic-crossing high-magnification microlensing events. The diagnostic is based on the difference in the morphology of perturbation inside the central caustics induced by a planet and a wide-separation binary companion. We find that the contours of excess exhibit a concentric circular pattern around the caustic center for the binary-lensing case, while the contours are elongated or off-centered for the planetary case. This difference results in the distinctive features of the individual lens populations in the residual of the trough region between the two peaks of the caustic crossings, where the shape of the residual is symmetric for binary lensing while it tends to be asymmetric for planetary lensing. We determine the ranges of the planetary parameters for which the proposed diagnostic can be used. The diagnostic is complementary to previously proposed diagnostics in the sense that it is applicable to caustic-crossing events with small finite-source effect.
4,000원
2.
2009.06 구독 인증기관 무료, 개인회원 유료
We investigate the degeneracy in the pattern of central microlensing perturbations of a pair of planetary systems where the planets are located from the primary with projected separations in units of the Einstein radius s and s-1, respectively. From this, we confirm the fact that although alike, the patterns of central perturbations induced by a close (s < 1) planet and a wide (s > 1) planet are not identical and the degree of difference depends on the planet/primary mass ratio and the planet-primary separation. We find that the difference can be greater than 5% for planetary systems with lensing parameters located in the parameter space of (1/1.8 < lsl < 1.8, q > 5 x 10-3), (1/1.3 < lsl < 1/3, q > 1 x 10-3), and (1/1.2 < lsl < 1.2, q > 5 x 10-4), where q represents the planet/primary mass ratio. Although this range occupies a small fraction of the entire parameter space of planetary systems, we predict that the chance of resolving the close/wide degeneracy would not be meager considering that the planet detection efficiency is higher for planets with resonant separations (s ~ 1) and heavier masses. We also find that the differences between the perturbation patterns are basically caused by the effect of the planetary caustic. This explains the tendency of the perturbation difference where (1) the difference increases as the planet/primary mass ratio increases and the separation approaches the Einstein radius, (2) the region of major difference is confined within the region around the line connecting the central and the planetary caustics, and (3) a wide (close) planetary system has a more extended central perturbation region toward the (opposite) direction of the planet.
4,000원
3.
2009.06 구독 인증기관 무료, 개인회원 유료
In this paper we present an independent FORTRAN code for calculating LTE-plane-parallel model atmospheres. The transfer equation has been solved using Avrett and Loeser method. It is shown that, using an approximate non-gray temperature distribution together with the iteration factors method (Simonneau and Crivellari) for correcting the temperature distribution reduce the number of iteration required to achieve the condition of radiative equilibrium. Preliminary results for pure helium model atmospheres are presented.
4,000원
4.
2009.06 구독 인증기관 무료, 개인회원 유료
The properties of SOHO/LASCO CMEs are subjected to projection effects. Their dependence on the source position is important to be studied. Our main aim is to study the dependence of CME properties on helio-longitude and latitude using the CMEs associated with type IIs observed by Wind/WAVES spacecraft (Deca-hecta metric type IIs - DH type IIs). These CMEs were identified as a separate population of geo-effective CMEs. We considered the CMEs associated with the Wind/WAVE type IIs observed during the period January 1997 - December 2005. The source locations of these CMEs were identified using their associated GOES X-ray flares and listed online. Using their locations and the cataloged properties of CMEs, we carried out a study on the dependence of CME properties on source location. We studied the above for three groups of CMEs: (i) all CMEs, (ii) halo and non-halo CMEs, and (iii) limb and non-limb CMEs. Major results from this study can be summarized as follows. (i) There is a clear dependence of speed on both the longitude and latitude; while there is an increasing trend with respect to longitude, it is opposite in the case of latitude. Our investigations show that the longitudinal dependence is caused by the projection effect and the latitudinal effect by the solar cycle effect. (ii) In the case of width, the disc centered events are observed with more width than those occurred at higher longitudes, and this result seems to be the same for latitude. (iii) The dependency of speed is confirmed on the angular distance between the sun-center and source location determined using both the longitude and latitude. (iv) There is no dependency found in the case of acceleration. (v) Among all the three groups of CMEs, the speeds of halo CMEs show more dependency on longitude. The speed of non-halo and non-limb CMEs show more dependency on latitude. The above results may be taken into account in correcting the projection effects of geo-effective CMEs.
4,000원
5.
2009.06 구독 인증기관 무료, 개인회원 유료
Transverse velocity vectors can be determined from a pair of images successively taken with a time interval using an optical flow technique. We have tested the performance of the new technique called NAVE (non-linear affine velocity estimator) recently implemented by Chae & Sakurai using real image data taken by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) aboard the Hinode satellite. We have developed two methods of estimating the errors in the determination of velocity vectors, one resulting from the non-linear fitting σv and the other εu resulting from the statistics of the determined velocity vectors. The real error is expected to be somewhere between σv and εu. We have investigated the dependence of the determined velocity vectors and their errors on the different parameters such as the critical speed for the subsonic filtering, the width of the localizing window, the time interval between two successive images, and the signal-to-noise ratio of the feature. With the choice of vcrit = 2 pixel/step for the subsonic filtering, and the window FWHM of 16 pixels, and the time interval of one step (2 minutes), we find that the errors of velocity vectors determined using the NAVE range from around 0.04 pixel/step in high signal-to-noise ratio features (S/N ~ 10), to 0.1 pixel/step in low signa-to-noise ratio features (S/N ~ 3) with the mean of about 0.06 pixel/step where 1 pixel/step corresponds roughly to 1 km/s in our case.
4,000원