간행물

천문학회지 KCI 등재 SCOPUS Journal of The Korean Astronomical Society

권호리스트/논문검색
이 간행물 논문 검색

권호

제37권 제1호 (2004년 3월) 4

1.
2004.03 구독 인증기관 무료, 개인회원 유료
Basic idea of Randall-Sundrum brane world model I and II is reviewed with detailed calculation. After introducing the brane world metric with exponential warp factor, metrics of Randall-Sundrum models are constructed. We explain how Randall-Sundrum model I with two branes makes the gauge hierarchy problem much milder, and derive Newtonian gravity in Randall-Sundrum model II with a single brane by considering small fluctuations.
4,600원
2.
2004.03 구독 인증기관 무료, 개인회원 유료
We analyse the results of mass models derived from the HI rotation! curves of spiral galaxies and find that the slope of the luminous mass-circular velocity relation is close to 4. The luminous mass-circular velocity relation with a slope of about 4 can be explained by an anti-correlation between the mass surface density of luminous matter and the mass ratio of the dark and luminous components. We also argue that the conspiracy between luminous and dark matter exists in a local sense (producing a flat or smooth rotation curve) and in a global sense (affecting the mass ratio of the dark and luminous matter), maintaining the luminous mass-circular velocity relation with a slope of about 4. We therefore propose that the physical basis of the Tully-Fisher relation lies in the luminous mass-circular velocity relation. While the slope of the luminous mass-circular velocity relation is fairly well defined regardless of the dark matter contribution, the zero-point of the relation is still to be determined. The determination of the slope of the Tully-Fisher relation needs one more step: the mean trend of the luminosity-luminous mass relation determines the overall shape (slope) of the Tully-Fisher relation. The key parameter needed to determine the zero-point of the luminous mass-circular velocity relation and the slope of the Tully-Fisher relation obviously is the luminous mass-to-light ratio.
6,300원
3.
2004.03 구독 인증기관 무료, 개인회원 유료
It has been a big mystery what drives filament eruptions and flares. We have studied in detail an X1.8 flare and its associated filament eruption that occurred in NOAA Active Region 9236 on November 24,2000. For this work we have analyzed high temporal (about 1 minute) and spatial (about 1 arcsec) resolution images taken by Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory, Hα centerline and blue wing (-0.6Å) images from Big Bear Solar Observatory, and 1600 Å UV images by the Transition Region and Corona Explorer (TRACE). We have found that there were several transient brightenings seen in Hα and, more noticeably in TRACE 1600 Å images around the preflare phase. A closer look at the UV brightenings in 1600 Å images reveals that they took place near one end of the erupting filament, and are a kind of jets supplying mass into the transient loops seen in 1600 Å. These brightenings were also associated with canceling magnetic features (CMFs) as seen in the MDI magnetograms. The flux variations of these CMFs suggest that the flux cancellation may have been driven by the emergence of the new flux. For this event, we have estimated the ejection speeds of the filament ranging from 10 to 160 km s-1 for the first twenty minutes. It is noted that the initiation of the filament eruption (as defined by the rise speed less than 20 km s-1) coincided with the preflare activity characterized by UV brightenings and CMFs. The speed of the associated LASCO CME can be well extrapolated from the observed filament speed and its direction is consistent with those of the disturbed UV loops associated with the preflare activity. Supposing the Hα/UV transient brightenings and the canceling magnetic features are due to magnetic reconnect ion in the low atmosphere, our results may be strong observational evidence supporting that the initiation of the filament eruption and the preflare phase of the associated flare may be physically related to low-atmosphere magnetic reconnection.
4,500원
4.
2004.03 구독 인증기관 무료, 개인회원 유료
We have developed a two fluid solar wind model from the Sun to 1 AU. Its basic equations are mass, momentum and energy conservations. In these equations, we include a wave mechanism of heating the corona and accelerating the wind. The two fluid model takes into account the power spectrum of Alfvenic wave fluctuation. Model computations have been made to fit observational constraints such as electron(Te) and proton(Tp) temperatures and solar wind speed(V) at 1 AU. As a result, we obtained physical quantities of solar wind as follows: Te is 7.4 X 10.5 K and density(n) is 1.7 X 107 cm-3 in the corona. At 1 AU Te is 2.1 X 105 K and n is 0.3 cm-3, and V is 511 km s-1. Our model well explains the heating of protons in the corona and the acceleration of the solar wind.
4,000원