간행물

천문학회지 KCI 등재 SCOPUS Journal of The Korean Astronomical Society

권호리스트/논문검색
이 간행물 논문 검색

권호

제41권 제6호 (2008년 12월) 5

1.
2008.12 구독 인증기관 무료, 개인회원 유료
We present UBV I photometry of the old open cluster NGC 1193. Color-magnitude diagrams (CMDs) of this cluster show a well defined main sequence and a sparse red giant branch. For the inner region of r < 50′′, three blue straggler candidates are newly found in addition to the objects Kaluzny (1988) already found. The color-color diagrams show that the reddening value toward NGC 1193 is E(B − V ) = 0.19 ± 0.04. From the ultraviolet excess measurement, we derived the metallicity to be [Fe/H]= −0.45 ± 0.12. A distance modulus of (m −M)0 = 13.3 ± 0.15 is obtained from zero age main sequence fitting with the empirically calibrated Hyades isochrone of Pinsonneault et al. (2004). CMD comparison with the Padova isochrones by Bertelli et al. (1994) gives an age of log t = 9.7±0.1.
4,000원
2.
2008.12 구독 인증기관 무료, 개인회원 유료
We have estimated the fractal dimension of the molecular clouds associated with the H ΙΙ region Sh 156 in the Outer Galaxy. We selected the 12CO cube data from the FCRAO CO Survey of the Outer Galaxy. Using a developed code within IRAF, we identified slice-clouds (2-dimensional clouds in velocity-channel maps) with two threshold temperatures to estimate the fractal dimension. With the threshold temperatures of 1.8 K, and 3 K, we identified 317 slice-clouds and 217 slice-clouds, respectively. There seems to be a turn-over location in fractional dimension slope around NP (area; number of pixel) = 40. The fractal dimensions was estimated to be D = 1.5 ∼ 1.53 for NP ≥ 40, where P ∝ AD/2 (P is perimeter and A is area), which is slightly larger than other results. The sampling rate (spatial resolution) of observed data must be an important parameter when estimating fractal dimension. Fractal dimension is apparently invariant when varying the threshold temperatures applied to slice-clouds identification.
4,000원
3.
2008.12 구독 인증기관 무료, 개인회원 유료
Abstract: Using the spectral data in the 3700 to 10050˚A wavelength range secured with the Hamilton Echelle Spectrograph (HES) at the Lick observatory, we have investigated the expansion velocities and the physical conditions of the elliptical planetary nebula NGC 6803. Various forbidden and permitted lines, e.g. HI, HeI, HeII, [OIII], [NII], [ArIII], and [SII], indicate complicated but systematic physical conditions variation: electron temperatures Tϵ ∼ 9000 – 11 000 K and electron number densities Nϵ ∼ 2000 – 9000 cm−3. The line profile analysis of these ions also indicates the systematic change or the acceleration of the expansion velocities in the range of 10 – 22 km s−1. We show that the velocity gradient and physical condition found in various ions are closely related to the prolate ellipsoidal structure of NGC 6803. The expansion velocity and the ionic abundance of O2+ were derived based on the OII and [OIII] lines. In spite of the discrepancy of ionic abundances derived by the two cases and their line profiles, the expansion velocities of them agree well. We find that the ratios of the red to blue line component of the HeII & OII lines are different from those of the [OIII] or other forbidden lines that indicates a possible involvement of emission of HeII & OII lines. This subtle difference and the different physical condition of the lines are likely to be caused by the elongated geometry and the latitude dependence of the emission zone.
4,000원
4.
2008.12 구독 인증기관 무료, 개인회원 유료
Using the MHD coronal seismology technique, we estimated the magnetic field for three spicules observed in 2008 June. For this study, we used the high resolution Ca II H line (3968.5 ˚A) images observed by the Hinode SOT and considered a vertical thin flux tube as a spicule model. To our knowledge, this is the first attempt to estimate the spicule magnetic field using the Hinode observation. From the observed oscillation properties, we determined the periods, amplitudes, minimum wavelengths, and wave speeds. We interpreted the observed oscillations as MHD kink waves propagating through a vertical thin flux tube embedded in a uniform field environment. Then we estimated spicule magnetic field assuming spicule densities. Major results from this study are as follows : (1) we observed three oscillating spicules having durations of 5-7 minutes, oscillating periods of 2-3 minutes, and transverse displacements of 700-1000 km. (2) The estimated magnetic field in spicules is about 10-18 G for lower density limit and about 43-76 G for upper density limit. (3) In this analysis, we can estimate the minimum wavelength of the oscillations, such as 60000 km, 56000 km, and 45000 km. This may be due to the much longer wavelength comparing with the height of spicules. (4) In the first event occurred on 2008 June 03, the oscillation existed during limited time (about 250 s). This means that the oscillation may be triggered by an impulsive mechanism (like low atmospheric reconnection), not continuous. Being compared with the ground-based observations of spicule oscillations, our observation indicates quite different one, i.e., more than one order longer in wavelength, a factor of 3-4 larger in wave speed, and 2-3 times longer in period.
4,000원
5.
2008.12 구독 인증기관 무료, 개인회원 유료
Recently, Choe & Cheng (2002) have demonstrated that multiple magnetic flux systems with closed configurations can have more magnetic energy than the corresponding open magnetic fields. In relation to this issue, we have addressed two questions: (1) how much fraction of eruptive solar active regions shows multiple flux system features, and (2) what winding angle could be an eruption threshold. For this investigation, we have taken a sample of 105 front-side halo CMEs, which occurred from 1996 to 2001, and whose source regions were located near the disk center, for which magnetic polarities in SOHO/MDI magnetograms are clearly discernible. Examining their soft X-ray images taken by Yohkoh SXT in pre-eruption stages, we have classified these events into two groups: multiple flux system events and single flux system events. It is found that 74% (78/105) of the sample events show multiple flux system features. Comparing the field configuration of an active region with a numerical model, we have also found that the winding angle of the eruptive flux system is slightly above 1.5π.
4,000원