간행물

천문학회지 KCI 등재 SCOPUS Journal of The Korean Astronomical Society

권호리스트/논문검색
이 간행물 논문 검색

권호

제40권 제3호 (2007년 9월) 2

1.
2007.09 구독 인증기관 무료, 개인회원 유료
The 2-1 and 5-4 transitions of SiO have been observed toward the Sgr B2 region, including the Principal Cloud(the GMC containing Sgr B2(M)) and its surroundings. The morphology and velocity structure of the SiO emission show a close resemblance with the HNCO Ring feature, identified by Minh & Irvine(2006), of about 10 pc in diameter, which may be expanding and colliding with the Principal Cloud. Three SiO clumps have been found around the Ring, with total column densities Nsio ~1x1014 cm-2 at the peak positions of these clumps. The fractional SiO abundance relative to H2 has been estimated to be ~(0.5-1)X10-9, which is about two orders of magnitude larger than the quiet dense cloud values. Our SiO observational result supports the existence of an expanding ring, which may be triggering active star formations in the Principal Cloud.
4,000원
2.
2007.09 구독 인증기관 무료, 개인회원 유료
The basic building block of solar filaments/prominences is thin threads of cool plasma. We have studied the spectral properties of velocity threads, clusters of thinner density threads moving together, by analyzing a sequence of Hα images of a quiescent filament. The images were taken at Big Bear Solar Observatory with the Lyot filter being successively tuned to wavelengths of -0.6, -0.3, 0.0, +0.3, and +0.6 Åfrom the centerline. The spectra of contrast constructed from the image data at each spatial point were analyzed using cloud models with a single velocity component, or three velocity components. As a result, we have identified a couple of velocity threads that are characterized by a narrow Doppler width (ΔλDÅ=0.27), a moderate value of optical thickness at the Hα absorption peak(T0=0.3) and a spatial width(FWHM) of about 1". It has also been inferred that there exist 4-6 velocity threads along the line of sight at each spatial resolution element inside the filament. In about half of the threads, matter moves fast with a line-of-sight speed of 15±3 km s-1, but in the other half it is either at rest or slowly moving with a line-of-sight velocity of 0±3 km s-1. It is found that a statistical balance approximately holds between the numbers of blue-shifted threads and red-shifted threads, and any imbalance between the two numbers is responsible for the non-zero line-of-sight velocity determined using a single-component model fit. Our results support the existence not only of high speed counter-streaming flows, but also of a significant amount of cool matter either being at rest or moving slowly inside the filament.
4,900원