CCD photometric observations of the globular cluster (GC), M53 (NGC 5024), are performed using the 1.8 m telescope at the Bohyunsan Optical Astronomy Observatory in Korea on the same nights (2002 April and 2003 May) as the observations of the GC M92 (NGC 6341) reported by Cho and Lee using the same instrumental setup. The data for M53 is reduced using the same method as used for M92 by Cho and Lee, including preprocessing, point-spread function fitting photometry, and standardization etc. Therefore, M53 and M92 are on the same photometric system defined by Landolt, and the photometry of M53 and M92 is tied together as closely as possible. After complete photometric reduction, the V versus B − V , V versus V − I, and V versus B − I color-magnitude diagrams (CMDs) of M53 are produced to derive the relative ages of M53 and M92 and derive the various characteristics of its CMDs in future analysis. From the present analysis, the relative ages of M53 and M92 are derived using the (B − V ) method reported by VandenBerg et al. The relative age of M53 is found to be 1.6 ± 0.85 Gyr younger than that of M92 if the absolute age of M92 is taken to be 14 Gyr. This relative age difference between M53 and M92 causes slight differences in the horizontal-branch morphology of these two GCs.
Early-type galaxies (ETGs) are supposed to follow the virial relation M = ke2 Re=G, with M being the mass, being the stellar velocity dispersion, Re being the eective radius, G being Newton's constant, and ke being the virial factor, a geometry factor of order unity. Applying this relation to (a) the ATLAS3D sample of Cappellari et al. (2013) and (b) the sample of Saglia et al. (2016) gives ensemble- averaged factors hkei = 5:15 0:09 and hkei = 4:01 0:18, respectively, with the dierence arising from dierent denitions of eective velocity dispersions. The two datasets reveal a statistically signicant tilt of the empirical relation relative to the theoretical virial relation such that M / (2 Re)0:92. This tilt disappears when replacing Re with the semi-major axis of the projected half-light ellipse, a. All best-t scaling relations show zero intrinsic scatter, implying that the mass plane of ETGs is fully determined by the virial relation. Whenever a comparison is possible, my results are consistent with, and conrm, the results by Cappellari et al. (2013). The difference between the relations using either a or Re arises from a known lack of highly elliptical high-mass galaxies; this leads to a scaling (1-) / M0:12, with being the ellipticity and Re = a p 1 - . Accordingly, a, not Re, is the correct proxy for the scale radius of ETGs. By geometry, this implies that early-type galaxies are axisymmetric and oblate in general, in agreement with published results from modeling based on kinematics and light distributions.
We present photometric results of the Sct star V1162 Ori, which is extensively monitored for a total of 49 nights from mid-December 2014 to early-March 2015. The observations are made with three KMTNet (Korea Microlensing Telescope Network) 1.6 m telescopes installed in Chile, South Africa, and Australia. Multiple frequency analysis is applied to the data and resulted in clear detection of seven frequencies without an alias problem: five known frequencies and two new ones with small amplitudes of 1.2-1.7 mmag. The amplitudes of all but one frequency are significantly different from previous results, confirming the existence of long-term amplitude changes. We examine the variations in pulsation timings of V1162 Ori for about 30 years by using the times of maximum light obtained from our data and collected from the literatures. The O − C (Observed minus Calculated) timing diagram shows a combination of a downward parabolic variation with a period decreasing rate of (1/P)dP/dt = −4.22 × 10−6 year−1 and a cyclic change with a period of about 2780 days. The most probable explanation for this cyclic variation is the light-travel-time effect caused by an unknown binary companion, which has a minimum mass of 0.69 M⊙. V1162 Ori is the first Sct-type pulsating star of which the observed fast period decrease can be interpreted as an evolutionary effect of a pre-main sequence star, considering its membership of the Orion OB 1c association.
We present analyses of 1250 variable sources identied in a 20 square degree eld toward NGC 2784 by the KMTNet Supernova Program. We categorize the variable sources into three groups based on their B-band variability. The rst group consists of 31 high variability sources with their B- band RMS variability greater than 0.3 magnitudes. The second group of medium variability contains 265 sources with RMS variability between 0.05 and 0.3 magnitudes. The remaining 951 sources belong to the third group of low variability with an RMS variability smaller than 0.05 magnitudes. Of the entire 1250 sources, 4 clearly show periods of variability greater than 100 days, while the rest have periods shorter than 51 days or no reliable periods. The majority of the sources show either rather irregular variability or short periods faster than 2 days. Most of the sources with reliable period determination between 2 and 51 days belong to the low-variability group, although a few belong to the medium-variability group. All the variable sources with periods longer than 35 days appear to be very red with BV > 1.5 and V I > 2.1 magnitudes. We classify candidates of 51 Cepheids, 17 semi-regular variables, 3 Mira types, 2 RV(B) Tauri stars, 26 eclipsing binary systems and 1 active galactic nucleus. The majority of long-term variables in our sample belong to either Mira or semi-regular types, indicating that long-term variability may be more prominent in post-main sequence phases of late-type stars. The depth of the eclipsing dips of the 26 candidates for eclipsing binaries is equivalent to 0.61 as the average relative size of the two stars in the binary system. Our results illustrate the power of the KMTNet Supernova Program for future studies of variable objects.
We present an optical imaging survey of AKARI Deep Field South (ADF-S) using the Korea Microlensing Telescope Network (KMTNet), to find optical counterparts of dusty star-forming galaxies. The ADF-S is a deep far-infrared imaging survey region with AKARI covering around 12 deg2, where the deep optical imaging data are not yet available. By utilizing the wide-field capability of the KMTNet telescopes (∼4 deg2), we obtain optical images in B, R and I bands for three regions. The target depth of images in B, R and I bands is 24 mag (AB) at 5, which enables us to detect most dusty star-forming galaxies discovered by AKARI in the ADF-S. Those optical datasets will be helpful to constrain optical spectral energy distributions as well as to identify rare types of dusty star-forming galaxies such as dustobscured galaxy, sub-millimeter galaxy at high redshift.