검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 95

        6.
        2022.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We complete the survey for finite-source/point-lens (FSPL) giant-source events in 2016–2019 KMTNet microlensing data. The 30 FSPL events show a clear gap in Einstein radius, 9 μas < θE < 26 μas, which is consistent with the gap in Einstein timescales near tE ∼ 0.5 days found by Mr´oz et al. (2017) in an independent sample of point-source/point-lens (PSPL) events. We demonstrate that the two surveys are consistent. We estimate that the 4 events below this gap are due to a power-law distribution of freefloating planet candidates (FFPs) dNFFP/d logM = (0.4 ± 0.2) (M/38 M⊕)−p/star, with 0.9 ≲ p ≲ 1.2. There are substantially more FFPs than known bound planets, implying that the bound planet power-law index γ = 0.6 is likely shaped by the ejection process at least as much as by formation. The mass density per decade of FFPs in the Solar neighborhood is of the same order as that of ‘Oumuamua-like objects. In particular, if we assume that ‘Oumuamua is part of the same process that ejected the FFPs to very wide or unbound orbits, the power-law index is p = 0.89 ± 0.06. If the Solar System’s endowment of Neptune-mass objects in Neptune-like orbits is typical, which is consistent with the results of Poleski et al. (2021), then these could account for a substantial fraction of the FFPs in the Neptune-mass range.
        5,800원
        8.
        2022.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present the analysis of a planetary microlensing event OGLE-2019-BLG-0362 with a shortduration anomaly (∼0.4 days) near the peak of the light curve, which is caused by the resonant caustic. The event has a severe degeneracy with Δχ2 = 0.9 between the close and the wide binary lens models both with planet-host mass ratio q ≃ 0.007. We measure the angular Einstein radius but not the microlens parallax, and thus we perform a Bayesian analysis to estimate the physical parameters of the lens. We find that the OGLE-2019-BLG-0362L system is a super-Jovian-mass planet Mp = 3.26+0.83 −0.58 MJ orbiting an M dwarf Mh = 0.42+0.34 −0.23 M⊙ at a distance DL = 5.83+1.04 −1.55 kpc. The projected star-planet separation is a⊥ = 2.18+0.58 −0.72 AU, which indicates that the planet lies beyond the snow line of the host star.
        4,000원
        11.
        2020.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report the discovery of a giant exoplanet in the microlensing event OGLE-2017-BLG-1049, with a planet―host star mass ratio of q = 9.53 ± 0.39 × 10-3 and a caustic crossing feature in Korea Microlensing Telescope Network (KMTNet) observations. The caustic crossing feature yields an angular Einstein radius of θE = 0.52 ± 0.11 mas. However, the microlens parallax is not measured because the time scale of the event, tE ≃ 29 days, is too short. Thus, we perform a Bayesian analysis to estimate physical quantities of the lens system. We fi nd that the lens system has a star with mass Mh = 0.55+0.36 -0.29 M⊙ hosting a giant planet with Mp = 5.53+3.62 -2.87 MJup, at a distance of DL = 5.67+1.11 -1.52 kpc. The projected star{planet separation is aㅗ = 3.92+1.10 -1.32 au. This means that the planet is located beyond the snow line of the host. The relative lens{source proper motion is μrel ~ 7 mas yr-1, thus the lens and source will be separated from each other within 10 years. After this, it will be possible to measure the flux of the host star with 30 meter class telescopes and to determine its mass.
        4,000원
        14.
        2020.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        At q = 1.81 ± 0.20 × 10-5, KMT-2018-BLG-0029Lb has the lowest planet-host mass ratio q of any microlensing planet to date by more than a factor of two. Hence, it is the first planet that probes below the apparent "pile-up" at q = 5-10 ×10-5. The event was observed by Spitzer, yielding a microlens-parallax πE measurement. Combined with a measurement of the Einstein radius θE from finite-source effects during the caustic crossings, these measurements imply masses of the host Mhost = 1.14+0.10-0.12 M⊙ and planet Mplanet = 7.59+0.75-0.69 M⊕, system distance DL = 3.38+0.22-0.26 kpc and projected separation a⊥ = 4.27+0.21-0.23 AU. The blended light, which is substantially brighter than the microlensed source, is plausibly due to the lens and could be observed at high resolution immediately.
        5,200원
        15.
        2019.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present the results of near-infrared imaging observations of the galaxy overdensity around the z = 1.44 radio-loud active galactic nucleus (AGN) 6CE1100+3505, which was carried out with the purpose of sampling the redshifted Hα emission from the actively star-forming galaxies that could constitute the overdensity. The existence of the structure around this AGN was spectroscopically confirmed by previous grism observations which are however limited to the central region. Using the CH4Off narrow/medium-band and H broad band filters in the Wide Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT), we constructed a sample of objects that show a flux excess in the CH4Off band due to line emission. The emission line flux is ∼ 4.9 × 10−16 erg s−1 cm−2 , corresponding to a star formation rate (SFR) of ∼ 50 M⊙ yr−1 for galaxies at redshifts z ∼ 1.4. None of the galaxies with medium-band flux excess is located within 1 Mpc from the central AGN, and there is no evidence that the selected galaxies are associated with the proposed cluster. Along with the star formation quenching near the center that was found from the previous grism observations, the lack of extreme starbursts in the structure suggests that at z ∼ 1.4, overdense regions are no longer favorable locations for vigorous star formation.
        4,000원
        1 2 3 4 5