검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2020.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report the discovery of a giant exoplanet in the microlensing event OGLE-2017-BLG-1049, with a planet―host star mass ratio of q = 9.53 ± 0.39 × 10-3 and a caustic crossing feature in Korea Microlensing Telescope Network (KMTNet) observations. The caustic crossing feature yields an angular Einstein radius of θE = 0.52 ± 0.11 mas. However, the microlens parallax is not measured because the time scale of the event, tE ≃ 29 days, is too short. Thus, we perform a Bayesian analysis to estimate physical quantities of the lens system. We fi nd that the lens system has a star with mass Mh = 0.55+0.36 -0.29 M⊙ hosting a giant planet with Mp = 5.53+3.62 -2.87 MJup, at a distance of DL = 5.67+1.11 -1.52 kpc. The projected star{planet separation is aㅗ = 3.92+1.10 -1.32 au. This means that the planet is located beyond the snow line of the host. The relative lens{source proper motion is μrel ~ 7 mas yr-1, thus the lens and source will be separated from each other within 10 years. After this, it will be possible to measure the flux of the host star with 30 meter class telescopes and to determine its mass.
        4,000원
        2.
        2016.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report the characterization of a massive (mp = 3:91:4Mjup) microlensing planet (OGLE- 2015-BLG-0954Lb) orbiting an M dwarf host (M = 0:33  0:12M ) at a distance toward the Galactic bulge of 0:6+0:4 􀀀0:2 kpc, which is extremely nearby by microlensing standards. The planet-host projected separation is a?  1:2AU. The characterization was made possible by the wide- eld (4 deg2) high cadence (􀀀 = 6 hr􀀀1) monitoring of the Korea Microlensing Telescope Network (KMTNet), which had two of its three telescopes in commissioning operations at the time of the planetary anomaly. The source crossing time t = 16 min is among the shortest ever published. The high-cadence, wide- eld observations that are the hallmark of KMTNet are the only way to routinely capture such short crossings. High-cadence resolution of short caustic crossings will preferentially lead to mass and distance measurements for the lens. This is because the short crossing time typically implies a nearby lens, which enables the measurement of additional e ects (bright lens and/or microlens parallax). When combined with the measured crossing time, these e ects can yield planet/host masses and distance.
        4,000원