간행물

천문학회지 KCI 등재 SCOPUS Journal of The Korean Astronomical Society

권호리스트/논문검색
이 간행물 논문 검색

권호

제57권 제2호 (2024년 7월) 14

1.
2024.07 구독 인증기관 무료, 개인회원 유료
Full spectrum fitting is a powerful tool for estimating the stellar populations of galaxies, but the fitting results are often significantly influenced by internal dust attenuation. For understanding howthe choice of the internal dust correction method affects the detailed stellar populations estimated from the full spectrum fitting, we analyze the Sydney-Australian Astronomical Observatory Multiobject Integral field spectrograph (SAMI) galaxy survey data using the Penalized PiXel-Fitting (PPXF) package. Three choices are compared: (Choice-1) using the PPXF reddening option, (Choice-2) using the multiplicative Legendre polynomial, and (Choice-3) using none of them (no dust correction). In any case, the total mean stellar populations show reasonable mass-age and mass-metallicity relations (MTR and MZR), although the correlations appear to be strongest for Choice-1 (MTR) and Choice-2 (MZR). Whenwe compare the age-divided mean stellar populations, theMZRof young (<109.5 yr ≈ 3.2 Gyr) stellar components in Choice-2 is consistent with the gas-phase MZR, whereas those in the other two choices hardly are. On the other hand, the MTR of old (≥109.5 yr) stellar components in Choice-1 seems to be more reasonable than that in Choice-2, because the old stellar components in low-mass galaxies tend to be relatively younger than those in massive galaxies. Based on the results, we provide empirical guidelines for choosing the optimal options for dust correction.
4,000원
2.
2024.07 구독 인증기관 무료, 개인회원 유료
Carbon fusion is important to understand the late stages in the evolution of a massive star. Astronomically interesting energy ranges for the 12C+12C reactions have been, however, poorly constrained by experiments. Theoretical studies on stellar evolution have relied on reaction rates that are extrapolated from those measured in higher energies. In this work, we update the carbon fusion reaction rates by fitting the astrophysical S-factor data obtained from direct measurements based on the Fowler, Caughlan, & Zimmerman (1975) formula. We examine the evolution of a 20M⊙ star with the updated 12C+12C reaction rates performing simulations with the MESA (Modules for Experiments for Stellar Astrophysics) code. Between 0.5 and 1 GK, the updated reaction rates are 0.35 to 0.5 times less than the rates suggested by Caughlan & Fowler (1988). The updated rates result in the increase of core temperature by about 7% and of the neutrino cooling by about a factor of three. Moreover, the carbon-burning lifetime is reduced by a factor of 2.7. The updated carbon fusion reaction rates lead to some changes in the details of the stellar evolution model, their impact seems relatively minor compared to other uncertain physical factors like convection, overshooting, rotation, and mass-loss history. The astrophysical S-factor measurements in lower energies have large errors below the Coulomb barrier. More precise measurements in lower energies for the carbon burning would be useful to improve our study and to understand the evolution of a massive star.
4,000원
3.
2024.07 구독 인증기관 무료, 개인회원 유료
We investigate the properties of AGB and post-AGB (PAGB) stars, planetary nebulae, and young stellar objects (YSOs) in our Galaxy through an analysis of observational data covering visual and infrared (IR) wavelengths. Utilizing datasets from IRAS, 2MASS, AllWISE, Gaia DR3, and the SIMBAD object database, we perform an in-depth comparison between observational data and theoretical models. For this comparison, we present various color-magnitude diagrams (CMDs) in visual and IR bands, as well as IR two-color diagrams (2CDs). Our results demonstrate that the CMDs, incorporating the latest distance and extinction data from Gaia DR3 for a majority of sample stars, are effective in distinguishing different classes of stars. To improve the precision of our analysis, we apply theoretical radiative transfer models for dust shells around AGB and PAGB stars. A thorough comparison of the theoretical models with observations across various IR 2CDs and CMDs shows a significant agreement. We find that AGB and PAGB stars are among the brightest classes in visual and IR bands. Furthermore, most YSOs are clearly distinguishable from AGB stars on various IR CMDs, exhibiting fainter absolute magnitudes in IR bands.
4,300원
4.
2024.07 구독 인증기관 무료, 개인회원 유료
Much effort has been carried out to calibrate and revise asteroseismic relations, given their importance of relations in asteroseismology in determining fundamental parameters of stars. In this study, we statistically explore asteroseismic relations with partial correlation coefficients to determine the most fundamental parameters, separately analyzing asteroseismic data based on the evolutionary status of stars from main sequence up to core helium-burning red-clump stars. We have found that regardless of the evolutionary status of the sampled stars the surface gravity and density of stars strongly influence the observed correlations. More importantly, it is found that indirect correlations derived considering the influence of confounding parameters are subject to the evolutionary status. For example, the observed correlation of the large frequency separation Δν with the central frequency νmax is influenced by the stellar mass, radius, and luminosity only for main sequence stars. The observed correlation of the width of the Gaussian envelope δνenv with νmax is influenced by the stellar mass, effective temperature, radius, and luminosity for main-sequence and subgiant stars. The observed relation between Δν and the small frequency separation δν02 is influenced by the stellar mass, radius, and luminosity for main-sequence and subgiant stars. In contrast, effective temperature, metallicity, and age do not seem to significantly affect the observed correlations. Finally, we conclude by discussing implication of our findings.
4,000원
5.
2024.07 구독 인증기관 무료, 개인회원 유료
In this paper, we investigate asteroseismic scaling-relations of evolved stars in star clusters observed by Kepler/K2, aiming to address the issue of whether observed stellar oscillations are influenced by environmental factors, as there are interesting phenomena relating to the stellar pulsations observed in star clusters. Specifically, we compare statistical properties of distributions including Δν, νmax, HGauss, δνenv, and δν02 derived from red giant branch (RGB) and red clump (RC) stars in two pairs of star clusters: NGC 2682 - NGC 6819 and NGC 1817 - NGC 6811. We have found that the slopes of relations between νmax and Δν and between HGauss and νmax associated with RC stars in the more compact star clusters, NGC 2682 and NGC 1817, are in common less steep compared with those for NGC 6819 and NGC 6811. It is also found that the slopes of the relation between δνenv and νmax from RC stars in the more compact star clusters are in common steeper compared with those for the others. For the relation between δν02 and Δν obtained from RGB stars, the slope resulting from NGC 2682 and NGC 6819 is indistinguishable. The Kolmogorov–Smirnov tests conducted on RC stars in the pairs of NGC 2682 and NGC 6819, as well as NGC 1817 and NGC 6811, indicate that all the seismic quantities considered in this paper are drawn from different distributions. We conclude, therefore, that the properties of star clusters should be considered when asteroseismic data obtained from stars within star clusters are interpreted.
4,000원
6.
2024.07 구독 인증기관 무료, 개인회원 유료
During the formation of large-scale structures in the universe, weak internal shocks are induced within the hot intracluster medium (ICM), while strong accretion shocks arise in the warm-hot intergalactic medium (WHIM) within filaments, and the warm-cold gas in voids surrounding galaxy clusters. These cosmological shocks are thought to accelerate cosmic ray (CR) protons and electrons via diffusive shock acceleration (DSA). Recent advances in particle-in-cell and hybrid simulations have provided deeper insights into the kinetic plasma processes that govern microinstabilities and particle acceleration in collisionless shocks in weakly magnetized astrophysical plasma. In this study, we adopt a thermal-leakage type injection model and DSA power-law distribution functions in the test-particle regime. The CR proton spectrum directly connects to the Maxwellian distribution of protons at the injection momentum pinj = Qppth,p. On the other hand, the CR electron spectrum extends down to pmin = Qepth,e and is linked to the Maxwellian distribution of electrons. Here, pth,p and pth,e, are the proton and electron thermal momenta, respectively. Moreover, we propose that the postshock gas temperature and the injection parameters, Qp and Qe are self-regulated to maintain the test-particle condition, as the thermal energy is gradually transferred to the CR energy. Under these constraints, we estimate the self-regulated values of the temperature reduction factor, RT , and the proton injection parameter, Qp, along with the resulting CR efficiencies, ηp and ηe. We then provide analytical fitting functions for these parameters as functions of the shock Mach number, Ms. These fitting formulas may serve as valuable tools for quantitatively assessing the impact of CR protons and electrons, as well as the resulting nonthermal emissions in galaxy clusters and cosmic filaments.
4,000원
7.
2024.07 구독 인증기관 무료, 개인회원 유료
Hydrogen cyanide (HCN) and hydrogen isocyanide (HNC) are isomers with similar chemical properties. However, HNC can be converted into other molecules by reactions with atomic hydrogen (H) and atomic oxygen (O), resulting in a variation of the HCN/HNC abundance ratio. These reaction rates are sensitive to gas temperature, resulting in different abundance ratios in different temperature environments. The emission of HCN and HNC was found to distribute along ring structures in the protoplanetary disk of V883 Ori. HCN exhibits a multi-ring structure consisting of inner and outer rings. The outer ring represents a genuine chemical structure, whereas the inner ring appears to display such characteristics due to the high dust continuum optical depth at the center. However, HNC is entirely depleted in the warmer inner ring, while its line intensity is similar to that of HCN in the colder outer ring. In this study, we present a chemical calculation that reproduces the observed HCN/HNC abundance ratio in the inner and outer rings. This calculation suggests that the distinct emission distribution between HCN and HNC results from a currently ongoing outburst in V883 Ori. The sublimation of HCN and HNC from grain surfaces and the conversion of HNC to HCN determine their chemical distribution in the heated, warm inner disk.
4,000원
8.
2024.07 구독 인증기관 무료, 개인회원 유료
Forbush decreases (FDs), as the transient event of decreasing cosmic ray (CR) intensity, show the main phase of a sudden decrease within approximately one day and the recovery phase over several days. FDs are associated with abrupt solar wind events such as interplanetary shocks (IP shocks) and magnetic clouds. FD generation is explained by drift due to the magnetic field strength and by diffusion caused by magnetic turbulence. The FDs and the IP shocks from 1998 to 2004 in the solar maximum period were chosen to determine a more effective generation of FD between drift and diffusion. Seventy FDs with a CR variation of more than 3.0% and a minimum value of less than −1.5% were selected using Oulu neutron monitor data. The Advanced Composition Explorer satellite identified 292 IP shocks and we divided them into two sections: the pre-sheath region ahead of the shock front and the post-sheath region behind the shock front. The magnetic field strength, magnetic turbulence, solar wind speed, and solar wind turbulence of the post-sheath regions were analyzed. Most (62/70) of the FDs were associated with the post-sheath regions of the IP shocks. The important factors that generated the FDs were drift by the large physical properties in the post-sheath regions and diffusion by the strong turbulence in the post-sheath regions. The increase in the magnitude of interplanetary magnetic field (IMF) shows larger in the IP shocks associated with FD (2.33 times) than in those not associated with an FD (1.70 times) between the pre-sheath and post-sheath regions. On the other hand, the increase in turbulence of IMF was the same for IP shocks associated with an FD and not associated with an FD. Although it was difficult to determine the dominant factor for the generation of FDs, the present study suggested that the drift by the magnetic field strength may play a more significant role than the diffusion by the magnetic turbulence.
4,000원
9.
2024.07 구독 인증기관 무료, 개인회원 유료
The Balloon-borne Investigation of Temperature and Speed of Electrons in the corona (BITSE) mission, performed by KASI and NASA, used a high-altitude scientific balloon. The purpose of BITSE was to investigate the scientific feasibility of electron temperature and velocity measurements in the solar corona using wavelength-dependent polarization brightness differences. KASI was responsible for developing the command and data handling (C&DH) system, including the main electronics unit and flight software (FSW). Here, we introduce the development of C&DH system of BITSE and describe the ground integration and test and flight operations. The main electronics unit was built using an industrial-grade modular system in customized enclosures that withstood the operating environment. The FSW was developed using the core Flight System (cFS), an open-source software framework developed by NASA and used in several successful space missions. BITSE was launched at Fort Sumner, New Mexico, USA, on September 18, 2019. It observed the solar corona for approximately 4 hours at an altitude of approximately 40 km and collected 16,000 solar corona images. This study could provide guidelines for developing the C&DH system for future balloon missions.
4,600원
10.
2024.07 구독 인증기관 무료, 개인회원 유료
The Earth’s radiation belts, which extend from near the Earth to approximately geosynchronous orbit, contain highly energetic particles that actively interact with various plasma waves. This study reviews two numerical approaches to studying waveparticle interactions in the Earth’s radiation belts and discusses their respective advantages and limitations. The first approach involves diffusion simulations based on quasi-linear theory, which is well-suited for describing the collective dynamics of many particles from a statistical perspective. The second approach, test particle simulation, focuses on the detailed motion of individual particles, revealing nonlinear phenomena such as phase trapping and bunching. Both methods allow for the derivation of diffusion coefficients, which quantify the timescale of wave-particle interactions and help explain how particles either precipitate into the atmosphere or accelerate to higher energies in the Earth’s radiation belts. Additionally, these methodologies can be adapted to study the dynamics of planetary radiation belts, such as those around Jupiter and Saturn, by adjusting for the specific environmental parameters of each planet.
4,600원
11.
2024.07 구독 인증기관 무료, 개인회원 유료
We investigate the evolution of initial fractal clusters at 3 kpc from the Galactic Center (GC) of the MilkyWay and show how red supergiant clusters (RSGCs)-like objects, which are considered to be the result of active star formation in the Scutum complex, can form by 16 Myr. We find that initial tidal filling and tidal over-filling fractals are shredded by the tidal force, but some substructures can survive as individual subclusters, especially when the initial virial ratio is ≤0.5. These surviving subclusters are weakly mass segregated and show a top-heavy mass function. This implies the possibility that a single substructured star cluster can evolve into multiple ‘star clusters’.
4,200원
12.
2024.07 구독 인증기관 무료, 개인회원 유료
This study employs a range of AI-based bibliometric methods to examine trends among astronomical research publications. Astronomy is a field with a long history of research and a wide variety of fields, so there are many areas in which quantitative bibliometric studies can be used to categorize topics, summarize research trends, and explore future research directions. For our first attempt we chose the oldest astronomical instrument, the sundial. We collected a total of 172 sundial and gnomon research papers from 1909 to 2024 from Web of Science and Scopus databases. A bibliometric analysis of the astronomical research papers was performed using the bibliometrix package in R. Topics were categorized and discussed using the Structural Topic Model (STM) method. Productivity, citation counts, and other metrics were compared across countries and journals and the global network of researchers engaged in the study of sundials was analyzed. Results emphasize the need for greater international collaboration and interdisciplinary integration. Current trends in sundial and gnomon research were reviewed, identifying eight research topics through the use of STM, demonstrating the evolution of this field into various applications. The article concludes by discussing future research directions for sundials and gnomons, demonstrating the applicability of AI-assisted bibliometric analysis in various fields of astronomy research.
4,800원
13.
2024.07 구독 인증기관 무료, 개인회원 유료
We investigated dynamic interaction between adjacent magnetic loops in the solar atmosphere, which is a process of volume shrinkage with nonuniform acceleration caused by Lorentz force. When these loops locally have different thermal and dynamic properties, a significant discrepancy between their translational motions driven by means of that force may arise, leading to the dynamic interaction. We use both numerical simulation and analytic model of magnetic piston-driven wave to evaluate how much a single event of the interaction contributes to increasing the temperature in the upper chromosphere. The model shows a possibility that a chromospheric plasma is heated by the single event to have transition region temperature, which is typically several tens of times higher than chromospheric temperature. The model also provides an insight into the formation height of the transition region.
4,000원
14.
2024.07 구독 인증기관 무료, 개인회원 유료
We examine whether the radial acceleration relation (RAR) of dwarf galaxies can be explained by Verlinde’s emergent gravity. This is the extension of Yoon et al. (2023), which examine the RAR of typical spiral galaxies, to less massive systems. To do this, we compile the line-of-sight velocity dispersion profiles of 30 dwarf galaxies in the Local Group from the literature. We then calculate the expected gravitational acceleration from the stellar component in the framework of the emergent gravity, and compare it with that from observations. The calculated acceleration with the emergent gravity under the assumption of a quasi-de Sitter universe agrees with the observed one within the uncertainty. Our results suggest that the emergent gravity can explain the kinematics of galaxies without introducing dark matter, even for less massive galaxies where dark matter is expected to dominate. This sharply contrasts with MOND, where a new interpolating function has to be introduced for dwarf galaxies to explain their kinematics without dark matter.
4,200원