간행물

천문학회지 KCI 등재 SCOPUS Journal of The Korean Astronomical Society

권호리스트/논문검색
이 간행물 논문 검색

권호

제50권 제6호 (2017년 12월) 5

1.
2017.12 구독 인증기관 무료, 개인회원 유료
H2O maser emission at 22 GHz in the circumstellar envelope is one of the good tracers of detailed physics and kinematics in the mass loss process of asymptotic giant branch stars. Long-term monitoring of an H2O maser spectrum with high time resolution enables us to clarify acceleration processes of the expanding shell in the stellar atmosphere. We monitored the H2O maser emission of the semi-regular variable R Crt with the Kagoshima 6-m telescope, and obtained a large data set of over 180 maser spectra over a period of 1.3 years with an observational span of a few days. Using an automatic peak detection method based on least-squares fitting, we exhaustively detected peaks as significant velocity components with the radial velocity on a 0.1 km s−1 scale. This analysis result shows that the radial velocity of redshifted and blue-shifted components exhibits a change between acceleration and deceleration on the time scale of a few hundred days. These velocity variations are likely to correlate with intensity variations, in particular during flaring state of H2O masers. It seems reasonable to consider that the velocity variation of the maser source is caused by shock propagation in the envelope due to stellar pulsation. However, it is difficult to explain the relationship between the velocity variation and the intensity variation only from shock propagation effects. We found that a time delay of the integrated maser intensity with respect to the optical light curve is about 150 days.
4,000원
2.
2017.12 구독 인증기관 무료, 개인회원 유료
We present a study of the inexplicit connection between radio jet activity and γ-ray emission of BL Lacertae (BL Lac; 2200+420). We analyze the long-term millimeter activity of BL Lac via interferometric observations with the Korean VLBI Network (KVN) obtained at 22, 43, 86, and 129 GHz simultaneously over three years (from January 2013 to March 2016); during this time, two γ-ray outbursts (in November 2013 and March 2015) can be seen in γ-ray light curves obtained from Fermi observations. The KVN radio core is optically thick at least up to 86 GHz; there is indication that it might be optically thin at higher frequencies. To first order, the radio light curves decay exponentially over the time span covered by our observations, with decay timescales of 41185 days, 352±79 days, 310±57 days, and 283±55 days at 22, 43, 86, and 129 GHz, respectively. Assuming synchrotron cooling, a cooling time of around one year is consistent with magnetic field strengths B ∼ 2 μT and electron Lorentz factors γ ∼ 10 000. Taking into account that our formal measurement errors include intrinsic variability and thus over-estimate the statistical uncertainties, we nd that the decay timescale  scales with frequency τ ν - 0.2. This relation is much shallower than the one expected from opacity effects (core shift), but in agreement with the (sub-)mm radio core being a standing recollimation shock. We do not find convincing radio flux counterparts to the γ-ray outbursts. The spectral evolution is consistent with the `generalized shock model' of Valtaoja et al. (1992). A temporary increase in the core opacity and the emergence of a knot around the time of the second -ray event indicate that this γ-ray outburst might be an `orphan' are powered by the `ring of fi re' mechanism.
4,300원
3.
2017.12 구독 인증기관 무료, 개인회원 유료
We present a new method for solving an inverse problem of flux emergence which transports subsurface magnetic flux from an inaccessible interior to the surface where magnetic structures may be observed to form, such as solar active regions. To make a quantitative evaluation of magnetic structures having various characteristics, we derive physical properties of subsurface magnetic field that characterize those structures formed through flux emergence. The derivation is performed by inversion from an evolutionary relation between two observables obtained at the surface, emerged magnetic flux and injected magnetic helicity, the former of which provides scale information while the latter represents the configuration of magnetic field.
4,000원
4.
2017.12 구독 인증기관 무료, 개인회원 유료
We present observations of HCO+ 1–0 absorption lines toward two extragalactic compact radio sources, NRAO 150 and BL Lac with the Korean VLBI Network in order to investigate their time variation over 20 years by Galactic foreground clouds. It is found that the line shape of –17 km s−1 component changed marginally during 1993–1998 period and has remained unaltered thereafter for NRAO 150. Its behavior is different from that of H2CO 110–111, suggesting chemical differentiation on ∼ 20 AU scale, the smallest ever seen. On the other hand, BL Lac exhibits little temporal variation for the HCO+ and H2CO lines. Our observation also suggests that Korea VLBI Network performs reliably in the spectrum mode in that the shapes of the new HCO+ 1–0 spectra are in good agreement with the previous ones to an accuracy of a few percent except the time varying component toward NRAO 150.
4,000원
5.
2017.12 구독 인증기관 무료, 개인회원 유료
We analyze the time data recorded in Korean astronomical almanacs for the years from 1913 to 1945, which belong to the period in which Japan occupied Korea (1910--1945). These almanacs, published by Japanese scholars, differ from previous almanacs in terms of organization, content, and calendrical methods. In this study, we first extract twelve kinds of time data from the almanacs at the following times: solar terms, rising and setting of the Sun and Moon, transit of the Sun, phases of the Moon (i.e., new Moon, first quarter Moon, full Moon, and last quarter Moon), and eclipses of the Sun and Moon. Then, we compare the time data with that obtained from modern calculations. Even though all time data in the almanacs are tabulated in units of minutes, we calculate the data in units of seconds and determine the root mean square (RMS) deviation values for each kind of time data to estimate the accuracy of the data. Our findings are as follows: First, the kind and tabulation method of time data changes several times. For instance, solar transit time is listed only for six years from 1937 to 1942. Second, the times of two equinoxes and those of a new Moon are considerably close to midnight. Third, there are some typographical errors in the almanacs, particularly in the times of moonrise and moonset. Fourth, the contact times for lunar eclipses represent the times of the umbra and not of the penumbra, which is different from the times for solar eclipses. Finally, the RMS deviation values are approximately 0.5 min on average in all kinds of time data, even though they show slightly large differences in the times related to the Moon. In conclusion, we believe that this study is useful for investigating the time data in the almanacs of other East Asian countries that were published during the same period, such as China, Japan, and Manchuria.
4,000원