검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        4.
        2017.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present a study of the inexplicit connection between radio jet activity and γ-ray emission of BL Lacertae (BL Lac; 2200+420). We analyze the long-term millimeter activity of BL Lac via interferometric observations with the Korean VLBI Network (KVN) obtained at 22, 43, 86, and 129 GHz simultaneously over three years (from January 2013 to March 2016); during this time, two γ-ray outbursts (in November 2013 and March 2015) can be seen in γ-ray light curves obtained from Fermi observations. The KVN radio core is optically thick at least up to 86 GHz; there is indication that it might be optically thin at higher frequencies. To first order, the radio light curves decay exponentially over the time span covered by our observations, with decay timescales of 41185 days, 352±79 days, 310±57 days, and 283±55 days at 22, 43, 86, and 129 GHz, respectively. Assuming synchrotron cooling, a cooling time of around one year is consistent with magnetic field strengths B ∼ 2 μT and electron Lorentz factors γ ∼ 10 000. Taking into account that our formal measurement errors include intrinsic variability and thus over-estimate the statistical uncertainties, we nd that the decay timescale  scales with frequency τ ν - 0.2. This relation is much shallower than the one expected from opacity effects (core shift), but in agreement with the (sub-)mm radio core being a standing recollimation shock. We do not find convincing radio flux counterparts to the γ-ray outbursts. The spectral evolution is consistent with the `generalized shock model' of Valtaoja et al. (1992). A temporary increase in the core opacity and the emergence of a knot around the time of the second -ray event indicate that this γ-ray outburst might be an `orphan' are powered by the `ring of fi re' mechanism.
        4,300원
        6.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Interferometric Monitoring of Gamma–ray Bright Active galactic nuclei (iMOGABA) program provides not only simultaneous multifrequency observations of bright gamma–ray detected active galactic nuclei (AGN), but also covers the highest Very Large Baseline Interferometry (VLBI) frequencies ever being systematically monitored, up to 129 GHz. However, observation and imaging of weak sources at the highest observed frequencies is very challenging. In the second paper in this series, we evaluate the viability of the frequency phase transfer technique to iMOGABA in order to obtain larger coherence time at the higher frequencies of this program (86 and 129 GHz) and image additional sources that were not detected using standard techniques. We find that this method is applicable to the iMOGABA program even under non–optimal weather conditions.
        5,400원
        8.
        2008.10 구독 인증기관·개인회원 무료
        9.
        2007.10 구독 인증기관·개인회원 무료
        10.
        2007.10 구독 인증기관·개인회원 무료