검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 43

        5.
        2023.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Crab nebula is widely used as a polarization angle calibrator for single-dish radio observations because of its brightness, high degree of linear polarization, and well-known polarization angle over a wide frequency range. However, the Crab nebula cannot be directly used as a polarization angle calibrator for single-dish observations with the Korean VLBI Network (KVN), because the beam size of the telescopes is smaller than the size of the nebula. To determine the polarization angle of the Crab nebula as seen by KVN, we use 3C 286, a compact polarized extragalactic radio source whose polarization angle is well-known, as a reference target. We observed both the Crab nebula and 3C 286 with the KVN from 2017 to 2021 and find that the polarization angles at the total intensity peak of the Crab nebula (equatorial coordinates (J2000) R.A. = 05h34m32.3804s and Dec = 22◦00′44.0982′′) are 154.2◦ ±0.3◦, 151.0◦ ±0.2◦, 150.0◦ ±1.0◦, and 151.3◦ ±1.1◦ at 22, 43, 86, and 94 GHz, respectively. We also find that the polarization angles at the pulsar position (RA = 05h34m31.971s and Dec = 22◦00′52.06′′) are 154.4◦ ±0.4◦, 150.7◦ ±0.4◦, and 149.0◦ ± 1.0◦ for the KVN at 22, 43, and 86 GHz. At 129 GHz, we suggest to use the values 149.0◦ ± 1.6◦ at the total intensity peak and 150.2◦ ± 2.0◦ at the pulsar position obtained with the Institute for Radio Astronomy in the Millimeter Range (IRAM) 30-meter Telescope. Based on our study, both positions within the Crab nebula can be used as polarization angle calibrators for the KVN single-dish observations.
        4,000원
        6.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Seoul Radio Astronomy Observatory (SRAO) operates a 6.1-meter radio telescope on the Gwanak campus of Seoul National University. We present the efforts to reform SRAO to a Very Long Baseline Interferometry (VLBI) station, motivated by recent achievements by millimeter interferometer networks such as Event Horizon Telescope, East Asia VLBI Network, and Korean VLBI Network (KVN). For this goal, we installed a receiver that had been used in the Combined Array for Research in Millimeterwave Astronomy and a digital backend, including an H-maser clock. The existing hardware and software were also revised, which had been dedicated only to single-dish operations. After several years of preparations and test observations in 1 and 3-millimeter bands, a fringe was successfully detected toward 3C 84 in 86 GHz in June 2022 for a baseline between SRAO and KVN Ulsan station separated by 300 km. Thanks to the dual frequency operation of the receiver, the VLBI observations will soon be extended to the 1 mm band and verify the frequency phase referencing technique between 1 and 3-millimeter bands.
        4,000원
        9.
        2019.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A long standing problem in the study of Active Galactic Nuclei (AGNs) is that the observed VLBI core is in fact a blending of the actual AGN core (classically defined by the  = 1 surface) and the upstream regions of the jet or optically thin flows. This blending may cause some biases in the observ- ables of the core, such as its flux density, size or brightness temperature, which may lead to misleading interpretation of the derived quantities and physics. We study the effects of such blending under the view of the Korean VLBI Network (KVN) for a sample of AGNs at 43 GHz by comparing their observed properties with observations obtained using the Very Large Baseline Array (VLBA). Our results suggest that the observed core sizes are a factor  11 larger than these of VLBA, which is similar to the factor expected by considering the different resolutions of the two facilities. We suggest the use of this factor to consider blending effects in KVN measurements. Other parameters, such as flux density or brightness temperature, seem to possess a more complicated dependence.
        4,000원
        10.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The KVN(Korean VLBI Network)-style simultaneous multi-frequency receiving mode is demonstrated to be promising for mm-VLBI observations. Recently, other Very long baseline interferometry (VLBI) facilities all over the globe start to implement compatible optics systems. Simultaneous dual/multi-frequency VLBI observations at mm wavelengths with international baselines are thus possible. In this paper, we present the results from the first successful simultaneous 22/43 GHz dualfrequency observation with KaVA(KVN and VERA array), including images and astrometric results. Our analysis shows that the newly implemented simultaneous receiving system has brought a significant extension of the coherence time of the 43 GHz visibility phases along the international baselines. The astrometric results obtained with KaVA are consistent with those obtained with the independent analysis of the KVN data. Our results thus confirm the good performance of the simultaneous receiving systems for the non-KVN stations. Future simultaneous observations with more global stations bring even higher sensitivity and micro-arcsecond level astrometric measurements of the targets.
        4,000원
        11.
        2017.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present a study of the inexplicit connection between radio jet activity and γ-ray emission of BL Lacertae (BL Lac; 2200+420). We analyze the long-term millimeter activity of BL Lac via interferometric observations with the Korean VLBI Network (KVN) obtained at 22, 43, 86, and 129 GHz simultaneously over three years (from January 2013 to March 2016); during this time, two γ-ray outbursts (in November 2013 and March 2015) can be seen in γ-ray light curves obtained from Fermi observations. The KVN radio core is optically thick at least up to 86 GHz; there is indication that it might be optically thin at higher frequencies. To first order, the radio light curves decay exponentially over the time span covered by our observations, with decay timescales of 41185 days, 352±79 days, 310±57 days, and 283±55 days at 22, 43, 86, and 129 GHz, respectively. Assuming synchrotron cooling, a cooling time of around one year is consistent with magnetic field strengths B ∼ 2 μT and electron Lorentz factors γ ∼ 10 000. Taking into account that our formal measurement errors include intrinsic variability and thus over-estimate the statistical uncertainties, we nd that the decay timescale  scales with frequency τ ν - 0.2. This relation is much shallower than the one expected from opacity effects (core shift), but in agreement with the (sub-)mm radio core being a standing recollimation shock. We do not find convincing radio flux counterparts to the γ-ray outbursts. The spectral evolution is consistent with the `generalized shock model' of Valtaoja et al. (1992). A temporary increase in the core opacity and the emergence of a knot around the time of the second -ray event indicate that this γ-ray outburst might be an `orphan' are powered by the `ring of fi re' mechanism.
        4,300원
        14.
        2016.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Early-type galaxies (ETGs) are supposed to follow the virial relation M = ke2 Re=G, with M being the mass,  being the stellar velocity dispersion, Re being the e ective radius, G being Newton's constant, and ke being the virial factor, a geometry factor of order unity. Applying this relation to (a) the ATLAS3D sample of Cappellari et al. (2013) and (b) the sample of Saglia et al. (2016) gives ensemble- averaged factors hkei = 5:15  0:09 and hkei = 4:01  0:18, respectively, with the di erence arising from di erent de nitions of e ective velocity dispersions. The two datasets reveal a statistically signi cant tilt of the empirical relation relative to the theoretical virial relation such that M / (2 Re)0:92. This tilt disappears when replacing Re with the semi-major axis of the projected half-light ellipse, a. All best- t scaling relations show zero intrinsic scatter, implying that the mass plane of ETGs is fully determined by the virial relation. Whenever a comparison is possible, my results are consistent with, and con rm, the results by Cappellari et al. (2013). The difference between the relations using either a or Re arises from a known lack of highly elliptical high-mass galaxies; this leads to a scaling (1-) / M0:12, with  being the ellipticity and Re = a p 1 - . Accordingly, a, not Re, is the correct proxy for the scale radius of ETGs. By geometry, this implies that early-type galaxies are axisymmetric and oblate in general, in agreement with published results from modeling based on kinematics and light distributions.
        4,000원
        18.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Active galactic nuclei (AGN) are known for irregular variability on all time scales, down to intra-day variability with relative variations of a few percent within minutes to hours. On such short timescales, unexplored territory, such as the possible existence of a shortest characteristic time scale of activity and the shape of the high frequency end of AGN power spectra, still exists. We present the results of AGN single-dish fast photometry performed with the Korean VLBI Network (KVN). Observations were done in a “anti-correlated” mode using two antennas, with always at least one antenna pointing at the target. This results in an effective time resolution of less than three minutes. We used all four KVN frequencies, 22, 43, 86, and 129 GHz, in order to trace spectral variability, if any. We were able to derive high-quality light curves for 3C 111, 3C 454.3, and BL Lacertae at 22 and 43 GHz, and for 3C 279 at 86 GHz, between May 2012 and April 2013. We performed a detailed statistical analysis in order to assess the levels of variability and the corresponding upper limits. We found upper limits on flux variability ranging from ∼1.6% to ∼7.6%. The upper limits on the derived brightness temperatures exceed the inverse Compton limit by three to six orders of magnitude. From our results, plus comparison with data obtained by the University of Michigan Radio Astronomy Observatory, we conclude that we have not detected source-intrinsic variability which would have to occur at sub-per cent levels.
        4,200원
        19.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report first results from KVN and VERA Array (KaVA) VLBI observations obtained in the frame of our Plasma-physics of Active Galactic Nuclei (PAGaN) project. We observed eight selected AGN at 22 and 43 GHz in single polarization (LCP) between March 2014 and April 2015. Each source was observed for 6 to 8 hours per observing run to maximize the uv coverage. We obtained a total of 15 deep high-resolution images permitting the identification of individual circular Gaussian jet components and three spectral index maps of BL Lac, 3C 111 and 3C 345 from simultaneous dual-frequency observations. The spectral index maps show trends in agreement with general expectations – flat core and steep jets – while the actual value of the spectral index for jets shows indications for a dependence on AGN type. We analyzed the kinematics of jet components of BL Lac and 3C 111, detecting superluminal proper motions with maximum apparent speeds of about 5c. This constrains the lower limits of the intrinsic component velocities to  0.98c and the upper limits of the angle between jet and line of sight to 20◦. In agreement with global jet expansion, jet components show systematically larger diameters d at larger core distances r, following the global relation d  0.2r, albeit within substantial scatter.
        4,500원
        20.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Active Galactic Nuclei (AGN) with bright radio jets o er the opportunity to study the structure of and physical conditions in relativistic out ows. For such studies, multi-frequency polarimetric very long baseline interferometric (VLBI) observations are important as they directly probe particle densities, magnetic eld geometries, and several other parameters. We present results from rst-epoch data obtained by the Korean VLBI Network (KVN) within the frame of the Plasma Physics of Active Galactic Nuclei (PAGaN) project. We observed seven radio-bright nearby AGN at frequencies of 22, 43, 86, and 129 GHz in dual polarization mode. Our observations constrain apparent brightness temperatures of jet components and radio cores in our sample to > 108:01 K and > 109:86 K, respectively. Degrees of linear polarization mL are relatively low overall: less than 10%. This indicates suppression of polarization by strong turbulence in the jets. We found an exceptionally high degree of polarization in a jet component of BL Lac at 43 GHz, with mL  40%. Assuming a transverse shock front propagating downstream along the jet, the shock front being almost parallel to the line of sight can explain the high degree of polarization.
        4,600원
        1 2 3