간행물

천문학회지 KCI 등재 SCOPUS Journal of The Korean Astronomical Society

권호리스트/논문검색
이 간행물 논문 검색

권호

제47권 제4호 (2014년 8월) 5

1.
2014.08 구독 인증기관 무료, 개인회원 유료
A silicate carbon star is a carbon star which shows circumstellar silicate dust features. We col- lect a sample of 44 silicate carbon stars from the literature and investigate the validity of the classification. For some objects, it is uncertain whether the central star is a carbon star. We confirm that 29 objects are verified silicate carbon stars. We classify the confirmed objects into three subclasses based on the evolution phase of the central star. To investigate the effect of the chemical transition phase from O to C, we use the radiative transfer models for the detached silicate dust shells. The spectral energy distributions and the infrared two-color diagrams of the silicate carbon stars are compared with the theoretical model results. For the chemical transition model without considering the effect of a disk, we find that the life time of the silicate feature is about 50 to 400 years depending on the initial dust optical depth.
4,500원
2.
2014.08 구독 인증기관 무료, 개인회원 유료
The astrophysical parameters of four unstudied open star cluster candidates; Ivanov 2, 7, 9, and Harvard 9; are estimated for the first time using the PPMXL database. The stellar density distributions and color-magnitude diagrams for each cluster are used to determine the geometrical structure (cluster center, limited radius, core and tidal radii, the distances from the Sun, from the Galactic center and from the Galactic plane). Also, the main photometric parameters (age, distance modulus, color excesses, membership, total mass, relaxation time, luminosity and mass functions) are estimated.
4,000원
3.
2014.08 구독 인증기관 무료, 개인회원 유료
We present measurements of the Fe Kα emission line of the intermediate polar V1223 Sagittarii observed with the Suzaku satellite. The spectrum is modeled with an absorbed thermal bremsstrahlung spectrum and three Gaussians for the three components of the Fe Kα lines. We resolve the neutral or low- ionized (6.41keV), He-like (6.70keV), and H-like (7.00keV) iron lines. We also obtain a thermal continuum temperature of 25 keV, which supports a thermal origin of the hard X-rays observed from the shock heated layers of gas between the white dwarf and the shock front. Hence, we believe that the He-like and H-like lines are from the collisional plasma. On the origin of the Fe Kα fluorescence line, we find that it could be partly from reflections of hard X-rays from the white dwarf surface and the NH absorption columns. We also discuss the Fe Kα emission line as veritable tool for the probe of some astrophysical sites.
4,000원
4.
2014.08 구독 인증기관 무료, 개인회원 유료
I show that the standard microlensing technique to measure the angular radius of a star using color/surface-brightness relations can be inverted, via late-time proper motion measurements, to calibrate these relations. The method is especially useful for very metal-rich stars because such stars are in short supply in the solar neighborhood where other methods are most effective, but very abundant in Galactic bulge microlensing fields. I provide a list of eight spectroscopically identified high-metallicity bulge stars with the requisite finite-source effects, seven of which will be suitable calibrators when the Giant Magellan Telescope comes on line. Many more such sources can be extracted from current and future microlensing surveys.
4,000원
5.
2014.08 구독 인증기관 무료, 개인회원 유료
The jet production efficiency of radio galaxies can be quantified by comparison of their kinetic jet powers Pjet and Bondi accretion powers PB. These two parameters are known to be related linearly, with the jet power resulting from the Bondi power by multiplication with an efficiency factor of order 1%. Using a recently published (Nemmen & Tchekhovskoy 2014) high-quality sample of 27 radio galaxies, I construct a PB − Pjet diagram that includes information on optical AGN types as far as available. This diagram indicates that the jet production efficiency is a function of AGN type: Seyfert 2 galaxies seem to be systematically (with a false alarm probability of 4.3 × 10−4) less efficient, by about one order of magnitude, in powering jets than Seyfert 1 galaxies, LINERs, or the remaining radio galaxies. This suggests an evolutionary sequence from Sy 2s to Sy 1s and LINERs, controlled by an interplay of jets on the one hand and dust and gas in galactic nuclei on the other hand. When taking this effect into account, the PB − Pjet relation is probably much tighter intrinsically than currently assumed.
3,000원