간행물

천문학회지 KCI 등재 SCOPUS Journal of The Korean Astronomical Society

권호리스트/논문검색
이 간행물 논문 검색

권호

제57권 제1호 (2024년 1월) 5

1.
2024.01 구독 인증기관 무료, 개인회원 유료
Korean historical literatures offer numerous records on astronomical phenomena such as eclipses, comets, and close approaches, etc. Records of close approaches often use specific terms to describe the angular distance, which lack translation into modern numerical values. We study the usage of the five commonly used terms, namely, Entry (入, En), Invasion (犯, In), Occultation (掩, Oc), Eclipse (食, Ec), as well as the unit Chi (尺). Our analysis is based on more than 2,300 records from Goryeo (918–1392 CE) and Joseon (1392–1910 CE) Dynasties. Through statistical analysis, we determine their quantitative definitions. We convert the lunisolar calendar to the Julian and Gregorian date and utilize the modern ephemeris DE431 to calculate the angular distance between celestial bodies. We find that the angular distances of the terms En, In, Oc, and Ec correspond to respectively 1.78◦+2.36 −1.11, 0.89◦+3.54 −0.51, 0.44◦+1.15 −0.31, and 0.29◦+2.61 −0.16 for the Goryeo Dynasty and 1.36◦+1.15 −0.64, 0.51◦+1.11 −0.32, 0.25◦+0.27 −0.17, and 0.21◦+0.25 −0.11 for the Joseon Dynasty. Additionally, we determine the angular size of the unit Chi by using the records from Korean chronicles along with the drawings of comets’ tails in the Daily Log (天變謄錄). We estimate the unit Chi to be 1.11◦+0.46 −0.40 and find that the numerical definition was consistent throughout the two dynasties in Korea. Furthermore, we find that the terms were used to describe the closest approach and that there is no observational bias in the angular distances against the apparent magnitudes of the objects. We show that the terms En, In, Oc, and Ec represent decreasing angular distance in that order and this ordering was consistent in both dynasties.
4,000원
2.
2024.01 구독 인증기관 무료, 개인회원 유료
A force-free field (FFF) is determined solely by the normal components of magnetic field and current density on the entire boundary of the domain. Methods employing three components of magnetic field suffer from overspecification of boundary conditions and/or a nonzero divergence-B problem. A vector potential formulation eliminates the latter issue, but introduces difficulties in imposing the normal component of current density at the boundary. This paper proposes four different boundary treatment methods within the vector potential formulation. We conduct a comparative analysis of the vector potential FFF solvers that we have developed incorporating these methods against other FFF codes in different magnetic field representations. Although the vector potential solvers with the new boundary treatments do not outperform our poloidal-toroidal formulation code, they demonstrate comparable or superior performance compared to the optimization code in SolarSoftWare. The methods developed here are expected to be readily applied not only to force-free field computations but also to time-dependent data-driven simulations.
4,300원
3.
2024.01 구독 인증기관 무료, 개인회원 유료
In order to attract students to the radio universe, we have constructed a three-element radio interferometer in the National Youth Space Center, Goheung, Korea. It consists of three 1.8 m off-axis parabola antennas with driving systems, sideband separation receivers operating in 12 GHz, a narrow band digitizer, and correlation software. We have used as many commercial products as possible to reduce development costs. The maximum separation of 20 m gives an angular resolution of ∼4′, and the shortest baseline of 3.8 m prevents a serious missing flux. Fringes are detected for several radio sources, including the sun and Cas A. After a rough relative calibration, we have derived visibilities for the sun, whose amplitudes are decreasing for longer baselines. We have made a solar image using the visibility amplitudes and closure phases, referring to the 17 GHz image by Nobeyama Radioheliograph. Developing a flexible real-time correlator seems most crucial if this kind of the system is to be used for more rigorous scientific studies.
4,000원
4.
2024.01 구독 인증기관 무료, 개인회원 유료
The Sun-Earth Lagrange point L4, which is called a parking space of space, is considered one of the unique places where solar activity and the heliospheric environment can be observed continuously and comprehensively. The L4 mission affords a clear and wide-angle view of the Sun-Earth line for the study of Sun-Earth connections from remote-sensing observations. The L4 mission will significantly contribute to advancing heliophysics science, improving space weather forecasting capability, extending space weather studies far beyond near-Earth space, and reducing risk from solar radiation hazards on human missions to the Moon and Mars. Our paper outlines the importance of L4 observations by using remote-sensing instruments and advocates comprehensive and coordinated observations of the heliosphere at multi-points including other planned L1 and L5 missions. We mainly discuss scientific perspectives on three topics in view of remote sensing observations: (1) solar magnetic field structure and evolution, (2) source regions of geoeffective solar energetic particles (SEPs), and (3) stereoscopic views of solar corona and coronal mass ejections (CMEs).
4,000원
5.
2024.01 구독 인증기관 무료, 개인회원 유료
The Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) will provide all-sky spectral survey data covering optical to mid-infrared wavelengths with a spatial resolution of 6.′′2, which can be widely used to study galaxy formation and evolution. We investigate the galaxy-galaxy blending in SPHEREx datasets using the mock galaxy catalogs generated from cosmological simulations and observational data. Only ∼0.7% of the galaxies will be blended with other galaxies in all-sky survey data with a limiting magnitude of 19 AB mag. However, the fraction of blended galaxies dramatically increases to ∼7–9% in the deep survey area around the ecliptic poles, where the depth reaches ∼22 AB mag. We examine the impact of the blending in the number count and luminosity function analyses using the SPHEREx data. We find that the number count can be overestimated by up to 10–20% in the deep regions due to the flux boosting, suggesting that the impact of galaxy-galaxy blending on the number count is moderate. However, galaxy-galaxy blending can marginally change the luminosity function by up to 50% over a wide range of redshifts. As we only employ the magnitude limit at Ks-band for the source detection, the blending fractions determined in this study should be regarded as lower limits.
4,000원