검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 26

        1.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) will provide all-sky spectral survey data covering optical to mid-infrared wavelengths with a spatial resolution of 6.′′2, which can be widely used to study galaxy formation and evolution. We investigate the galaxy-galaxy blending in SPHEREx datasets using the mock galaxy catalogs generated from cosmological simulations and observational data. Only ∼0.7% of the galaxies will be blended with other galaxies in all-sky survey data with a limiting magnitude of 19 AB mag. However, the fraction of blended galaxies dramatically increases to ∼7–9% in the deep survey area around the ecliptic poles, where the depth reaches ∼22 AB mag. We examine the impact of the blending in the number count and luminosity function analyses using the SPHEREx data. We find that the number count can be overestimated by up to 10–20% in the deep regions due to the flux boosting, suggesting that the impact of galaxy-galaxy blending on the number count is moderate. However, galaxy-galaxy blending can marginally change the luminosity function by up to 50% over a wide range of redshifts. As we only employ the magnitude limit at Ks-band for the source detection, the blending fractions determined in this study should be regarded as lower limits.
        4,000원
        5.
        2022.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report the discovery of four quasars with M1450 ≳ −25.0 mag at z ∼ 5 and supermassive black hole mass measurement for one of the quasars. They were selected as promising high-redshift quasar candidates via deep learning and Bayesian information criterion, which are expected to be effective in discriminating quasars from the late-type stars and high-redshift galaxies. The candidates were observed by the Double Spectrograph on the Palomar 200-inch Hale Telescope. They show clear Lyα breaks at about 7000–8000 ˚A, indicating they are quasars at 4.7 < z < 5.6. For HSC J233107-001014, we measure the mass of its supermassive black hole (SMBH) using its Civ λ1549 emission line. The SMBH mass and Eddington ratio of the quasar are found to be ∼108 M⊙ and ∼0.6, respectively. This suggests that this quasar possibly harbors a fast growing SMBH near the Eddington limit despite its faintness (LBol < 1046 erg s−1). Our 100% quasar identification rate supports high efficiency of our deep learning and Bayesian information criterion selection method, which can be applied to future surveys to increase high-redshift quasar sample.
        4,000원
        12.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Intensive Monitoring Survey of Nearby Galaxies (IMSNG) is a high cadence observation program monitoring nearby galaxies with high probabilities of hosting supernovae (SNe). IMSNG aims to constrain the SN explosion mechanism by inferring sizes of SN progenitor systems through the detection of the shock-heated emission that lasts less than a few days after the SN explosion. To catch the signal, IMSNG utilizes a network of 0.5-m to 1-m class telescopes around the world and monitors the images of 60 nearby galaxies at distances D < 50 Mpc to a cadence as short as a few hours. The target galaxies are bright in near-ultraviolet (NUV) with MNUV < - 18.4 AB mag and have high probabilities of hosting SNe (0.06 SN yr-1 per galaxy). With this strategy, we expect to detect the early light curves of 3.4 SNe per year to a depth of R  19:5 mag, enabling us to detect the shock-heated emission from a progenitor star with a radius as small as 0.1 R . The accumulated data will be also useful for studying faint features around the target galaxies and other science projects. So far, 18 SNe have occurred in our target fi elds (16 in IMSNG galaxies) over 5 years, confi rming our SN rate estimate of 0.06 SN yr-1 per galaxy.
        4,200원
        20.
        2016.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Multiple color selection techniques are successful in identifying quasars from wide-field broad- band imaging survey data. Among the quasars that have been discovered so far, however, there is a redshift gap at 5 . z . 5.7 due to the limitations of filter sets in previous studies. In this work, we present a new selection technique of high redshift quasars using a sequence of medium-band filters: nine filters with central wavelengths from 625 to 1025 nm and bandwidths of 50 nm. Photometry with these medium-bands traces the spectral energy distribution (SED) of a source, similar to spectroscopy with resolution R  15. By conducting medium-band observations of high redshift quasars at 4.7  z  6.0 and brown dwarfs (the main contaminants in high redshift quasar selection) using the SED camera for QUasars in EArly uNiverse (SQUEAN) on the 2.1-m telescope at the McDonald Observatory, we show that these medium-band filters are superior to multi-color broad-band color section in separating high redshift quasars from brown dwarfs. In addition, we show that redshifts of high redshift quasars can be determined to an accuracy of z/(1 + z) = 0.002 – 0.026. The selection technique can be extended to z  7, suggesting that the medium-band observation can be powerful in identifying quasars even at the re-ionization epoch.
        4,200원
        1 2