검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 22

        2.
        2023.05 구독 인증기관·개인회원 무료
        Our research team has developed a gamma ray detector which can be distributed over large area through air transport. Multiple detectors (9 devices per 1 set) are distributed to measure environmental radiation, and information such as the activity and location of the radiation source can be inferred using the measured data. Generally, radiation is usually measured by pointing the detector towards the radioactive sources for efficient measurement. However, the detector developed in this study is placed on the ground by dropping from the drone. Thus, it does not always face toward the radiation source. Also, since it is a remote measurement system, the user cannot know the angle information between the source and detector. Without the angle information, it is impossible to correct the measured value. The most problematic feature is when the backside of the detector (opposite of the scintillator) faces the radiation source. It was confirmed that the measurement value decreased by approximately 50% when the backside of the detector was facing towards the radiation source. To calibrate the measured value, we need the information that can indicate which part of the detector (front, side, back) faces the source. Therefore, in this study, we installed a small gamma sensor on the backside of the detector to find the direction of the detector. Since this sensor has different measurement specifications from the main sensor in terms of the area, type, efficiency and measurement method, the measured values between the two sensors are different. Therefore, we only extract approximate direction using the variation in the measured value ratio of the two sensors. In this study, to verify the applicability of the detector structure and measurement method, the ratio of measured values that change according to the direction of the source was investigated through MCNP simulation. The radioactive source was Cs-137, and the simulation was performed while moving in a semicircular shape with 15 degree steps from 0 degree to 180 degrees at a distance of 20 cm from the center point of the main sensor. Since the MCNP result indicates the probability of generating a pulse for one photon, this value was calculated based on 88.6 μCi to obtain an actual count. Through the ratio of the count values of the two sensors, it was determined whether the radioactive source was located in the front, side, or back of the probe.
        3.
        2023.05 구독 인증기관·개인회원 무료
        With the introduction and implementation of the National Research and Development Innovation Act in 2021, researchers are required to have a greater understanding of research ethics and to comply more strictly. The range of misconduct in research and the standards for sanctions have been expanded with the introduction of the National Research and Development Innovation Act. In addition, researchperforming institutions and specialized agencies have been obligated to establish their own research management systems and standards according to the changed criteria. The Korea Institute of Nuclear Nonproliferation and Control (KINAC), a nuclear regulatory authority that is conducting national R&D in related fields, has sought to strengthen research ethics by revising related regulations, introducing a plagiarism detection system, and expanding related education in accordance with these policies. In this study, we analyzed the effectiveness of the plagiarism detection system as a basic quality control measure for research results and a tool for enhancing research ethics, which was introduced. KINAC did not simply introduce a plagiarism detection program but established institutional improvements and other regulatory measures to support it, with the aim of more effectively managing research results. To analyze the effectiveness of this system, we calculated the plagiarism rate by sampling 30 papers each year for the three years before the introduction of the plagiarism detection system. When comparing the plagiarism rates before and after the introduction of the plagiarism detection system, no exceptional cases of high plagiarism rates were found in papers published after the introduction of the system. Although most of the papers before the introduction of the system showed a satisfactory plagiarism rate, some cases showed high plagiarism rates. We analyzed the cause of such cases in detail. Some exceptional cases were also found to be included in the range of misconduct regulated by the National Research and Development Innovation Act. As no such cases were found after the introduction of the system, we could infer that the system is effectively functioning as a tool for basic quality control and enhancing research ethics. In the future, we plan to expand the sample qualitatively and quantitatively by including other forms of outcomes published by the institution, not just papers, and conduct a more detailed analysis. Based on the results, we will develop various improvement plans for enhancing the quality and research ethics of the institution’s research results.
        1 2