자연재해 발생을 예방하기 위한 방재센서 기술이 중요하며 광섬유를 이용한 센서에 대한 관심이 높아지고 있다. 본 논문은 광섬유 센서 내장 탄소섬유시트로 보강된 RC보의 계측된 데이터로 결함 탐지 연구를 수행하였다. 미분의 국부적 변동 특성을 이용한 Method Ⅰ과 컨벌루션 방법을 이용한 Method Ⅱ를 비교, 분석하였다. 다른 차원의 데이터를 비교하기 위해서 무차원화 시켰으며, 분석 결과 Mehtod Ⅱ가 결함의 위치를 예리하게 잘 탐지하는 것으로 나타났다. Method Ⅱ인 컨벌루션에 사용 되는 필터 벡터를 잘 응용하면 더 좋은 효과를 기대할 수 있을 것으로 판단된다.
Sensor technology to prevent damage due to natural disasters is important, and interest in optical fiber sensors is increasing. In this paper, a damage detection study was performed using measurement data from a reinforced concrete beam reinforced by carbon fiber sheets embedded with optical fiber sensors. Method I using the local variation differential and Method II using the convolution method were compared and analyzed. In order to compare the data having different dimensions, it was first converted to a dimensionless quantity, and subsequent analysis showed that Method II sharply detects the location of damage. If the filter vector used in Method II is applied well, a better effect can be expected.