In this study, acoustic and viscosity data are collected in real time during the ball milling process and analyzed for correlation. After fast Fourier transformation (FFT) of the acoustic data, changes in the signals are observed as a function of the milling time. To analyze this quantitatively, the frequency band is divided into 1 kHz ranges to obtain an integral value. The integrated values in the 2–3 kHz range of the frequency band decrease linearly, confirming that they have a high correlation with changes in viscosity. The experiment is repeated four times to ensure the reproducibility of the data. The results of this study show that it is possible to estimate changes in slurry properties, such as viscosity and particle size, during the ball milling process using an acoustic signal.