최근의 기후변화는 연안에서 더욱 가속화되고 있어 연안에서의 해양 환경변화 감시의 중요성이 커지고 있다. 클로로필-a 농도는 해양 환경 변화의 중요한 지표 중 하나로 수십년 동안 여러 해색 위성을 통해 전구 해양 표층의 클로 로필-a 농도가 산출되었으며 다양한 연구 분야에 활용되었다. 하지만 연안 해역의 탁한 해수는 외해의 맑은 해수와는 구별되는 구성 성분과 광학적 특성으로 인해 나타나는 심각한 오차 때문에 일반적으로 사용되는 전지구 대양을 위하여 만들어진 클로로필-a 농도 알고리즘은 연안 해역에 대입할 수 없다. 또한 연안 해역은 해역에 따라 성분과 특성이 크게 달라져 통일된 하나의 알고리즘을 제시하기 어렵다. 이러한 문제점을 극복하기 위하여 연안의 탁도가 높은 해역에서는 구성 성분과 광학적 변동 특성을 고려한 다양한 알고리즘들이 개발되어 사용되어 왔다. 클로로필-a 농도 산출 알고리즘은 크게 경험적 알고리즘, 반해석적 알고리즘, 기계학습을 활용한 알고리즘 등으로 나눌 수 있다. 해수의 반사 스펙트 럼에 기반한 청색-녹색 밴드 비율이 기본적인 형태로 주로 사용된다. 반면 탁한 해수를 위해 개발된 알고리즘은 연안 해역에 존재하는 용존 유기물과 부유물의 영향을 상쇄시키기 위한 방식으로 녹색-적색 밴드 비율, 적색-근적외 밴드 비 율, 고유한 광학적 특성 등을 사용한다. 탁한 해수에서의 신뢰성 있는 위성 클로로필-a 농도 산출은 미래의 연안 해역을 관리하고 연안 생태 변화를 감시하는데 필수적이다. 따라서 본 연구는 탁도가 높은 Case 2 해수에서 활용되어온 알고리즘들을 요약하고, 한반도 주변해역의 모니터링과 연구에 대한 문제점을 제시한다. 또한 다분광 및 초분광 센서의 개발로 더욱 정확하고 다양한 해색 환경을 이해할 수 있는 미래의 해색 위성에 대한 발전 전망도 제시한다.
Climate change has been accelerating in coastal waters recently; therefore, the importance of coastal environmental monitoring is also increasing. Chlorophyll-a concentration, an important marine variable, in the surface layer of the global ocean has been retrieved for decades through various ocean color satellites and utilized in various research fields. However, the commonly used chlorophyll-a concentration algorithm is only suitable for application in clear water and cannot be applied to turbid waters because significant errors are caused by differences in their distinct components and optical properties. In addition, designing a standard algorithm for coastal waters is difficult because of differences in various optical characteristics depending on the coastal area. To overcome this problem, various algorithms have been developed and used considering the components and the variations in the optical properties of coastal waters with high turbidity. Chlorophyll-a concentration retrieval algorithms can be categorized into empirical algorithms, semi-analytic algorithms, and machine learning algorithms. These algorithms mainly use the blue-green band ratio based on the reflective spectrum of sea water as the basic form. In constrast, algorithms developed for turbid water utilizes the greenred band ratio, the red-near-infrared band ratio, and the inherent optical properties to compensate for the effect of dissolved organisms and suspended sediments in coastal area. Reliable retrieval of satellite chlorophyll-a concentration from turbid waters is essential for monitoring the coastal environment and understanding changes in the marine ecosystem. Therefore, this study summarizes the pre-existing algorithms that have been utilized for monitoring turbid Case 2 water and presents the problems associated with the mornitoring and study of seas around the Korean Peninsula. We also summarize the prospective for future ocean color satellites, which can yield more accurate and diverse results regarding the ecological environment with the development of multi-spectral and hyperspectral sensors.