CA저장 중 저장기체 조성에 따른 사과 Fuji의 증산속도를 측정하고, 같은 조건에서 증산속도를 예측하기 위한 수학적 모델을 설정하여 증산속도를 예측하였다. 온도 , 상대습도 98%, 공기 유속 0.25m/s의 저장조건에서 6주 동안 CA저장하였을 때 사과 Fuji의 호흡속도는 일반저온저장에 비하여 50%이하로 낮출 수 있었다. 같은 저장조건에서 일반저온저장에서의 사과의 증산속도가 CA저장에 비하여 50~70 % 높았으며, 일정한 산소농도의 CA
A transpiration model was selected and tested experimentally to predict transpiration into of Fuji apple stored in a normal air and controlled atmospheres (l∼3% O+ l∼3% CO) at 0 and 98% RH for 6weeks. CA storage decreased the respiration rate of Fuji apple by 50% when compared with normal air storage. The transpiration rates of apple showed 50∼70% higher in normal air storage than those in CA storage and were decreased by increasing COconcentration under same concentration of O. The transpiration rates estimated by the selected model were in good agreement with experimental data for Fuji apples under controlled atmosphere conditions and normal air. When the respiratory heat generation rate u of Fuji apple increased with storage conditions, the evaporating surface temperature and transpiration rate also increased. But since some portion of respiratory heat was used as latent heat in the evaporating surface, the change of u value had a little effect on the determination of the evaporation temperature and the transpiration rate.