Ocean biogeochemistry plays a crucial role in sustaining the marine ecosystem and global carbon cycle. To investigate the oceanic biogeochemical responses to iron parameters in the tropical Pacific, we conducted sensitivity experiments using the Nucleus for European Modelling of the Ocean–Tracers of Ocean Phytoplankton with Allometric Zooplankton (NEMO-TOPAZ) model. Compared to observations, the NEMO-TOPAZ model overestimated the concentrations of chlorophyll and dissolved iron (DFe). The sensitivity tests showed that with increasing (+50%) iron scavenging rates, chlorophyll concentrations in the tropical Pacific were reduced by approximately 16%. The bias in DFe also decreased by approximately 7%; however, the sea surface temperature was not affected. As such, these results can facilitate the development of the model tuning strategy to improve ocean biogeochemical performance using the NEMOTOPAZ model.