검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Seasonal forecasting has numerous socioeconomic benefits because it can be used for disaster mitigation. Therefore, it is necessary to diagnose and improve the seasonal forecast model. Moreover, the model performance is partly related to the ocean model. This study evaluated the hindcast performance in the upper ocean of the Global Seasonal Forecasting System version 5-Global Couple Configuration 2 (GloSea5-GC2) using a multivariable integrated evaluation method. The normalized potential temperature, salinity, zonal and meridional currents, and sea surface height anomalies were evaluated. Model performance was affected by the target month and was found to be better in the Pacific than in the Atlantic. An increase in lead time led to a decrease in overall model performance, along with decreases in interannual variability, pattern similarity, and root mean square vector deviation. Improving the performance for ocean currents is a more critical than enhancing the performance for other evaluated variables. The tropical Pacific showed the best accuracy in the surface layer, but a spring predictability barrier was present. At the depth of 301 m, the north Pacific and tropical Atlantic exhibited the best and worst accuracies, respectively. These findings provide fundamental evidence for the ocean forecasting performance of GloSea5.
        5,200원
        2.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ocean biogeochemistry plays a crucial role in sustaining the marine ecosystem and global carbon cycle. To investigate the oceanic biogeochemical responses to iron parameters in the tropical Pacific, we conducted sensitivity experiments using the Nucleus for European Modelling of the Ocean–Tracers of Ocean Phytoplankton with Allometric Zooplankton (NEMO-TOPAZ) model. Compared to observations, the NEMO-TOPAZ model overestimated the concentrations of chlorophyll and dissolved iron (DFe). The sensitivity tests showed that with increasing (+50%) iron scavenging rates, chlorophyll concentrations in the tropical Pacific were reduced by approximately 16%. The bias in DFe also decreased by approximately 7%; however, the sea surface temperature was not affected. As such, these results can facilitate the development of the model tuning strategy to improve ocean biogeochemical performance using the NEMOTOPAZ model.
        4,200원
        3.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Although recent reports suggest that the negative correlation between the Arctic Oscillation (AO) and the East Asian winter monsoon (EAWM) has been strengthened, it is not clear whether this intermittent relationship is an intrinsic oscillation in the climate system. We investigate the oscillating behavior of the AO-EAWM relationship at decadal time scales using the long-term (500-yr) climate model simulation. The results show that ice cover over the East Siberian Seas is responsible for the change in the coupling strength between AO and EAWM. We found that increased ice cover over these seas strengthens the AO-EAWM linkage, subsequently enhancing cold advection over the East Asia due to anomalous northerly flow via a weakened jet stream. Thus, this strengthened relationship favors more frequent occurrences of cold surges in the EAWM region. Results also indicate that the oscillating relationship between AO and EAWM is a natural variability without anthropogenic drivers, which may help us understand the AO-EAWM linkage under climate change.
        4,000원
        4.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Extreme temperatures and precipitations are expected to be more frequently occurring due to the ongoing global warming over the Korean Peninsula. However, few studies have analyzed the synoptic weather patterns associated with extreme events in a warming world. Here, the atmospheric patterns related to future extreme events are first analyzed using the HadGEM3-RA regional climate model. Simulations showed that the variability of temperature and precipitation will increase in the future (2051-2100) compared to the present (1981-2005), accompanying the more frequent occurrence of extreme events. Warm advection from East China and lower latitudes, a stagnant anticyclone, and local foehn wind are responsible for the extreme temperature (daily T>38 o C) episodes in Korea. The extreme precipitation cases (>500 mm day−1 ) were mainly caused by mid-latitude cyclones approaching the Korean Peninsula, along with the enhanced Changma front by supplying water vapor into the East China Sea. These future synoptic-scale features are similar to those of present extreme events. Therefore, our results suggest that, in order to accurately understand future extreme events, we should consider not only the effects of anthropogenic greenhouse gases or aerosol increases, but also small-scale topographic conditions and the internal variations of climate systems.
        4,800원