논문 상세보기

Effect of Sm2O3 Doping on Microstructure and Electrical Properties of ZPCCA-Based Varistors KCI 등재 SCOPUS

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/410469
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국재료학회지 (Korean Journal of Materials Research)
한국재료학회 (Materials Research Society Of Korea)
초록

The effect of Sm2O3 doping on the microstructure and electrical properties of the ZPCCA-based varistors is comprehensively investigated. The increase of doping content of Sm2O3 results in better densification (from 5.70 to 5.82 g/cm3) and smaller mean grain size (from 7.8 to 4.1 μm). The breakdown electric field increases significantly from 2568 to 6800 V/ cm as the doping content of Sm2O3 increases. The doping of Sm2O3 remarkably improves the nonlinear properties (increasing from 23.9 to 91 in the nonlinear coefficient and decreasing from 35.2 to 0.2 μA/cm2 in the leakage current density). Meanwhile, the doping of Sm2O3 reduces the donor concentration (the range of 2.73 X 1018 to 1.18 X 1018 cm-3) of bulk grain and increases the barrier height (the range of 1.10 to 1.49 eV) at the grain boundary. The density of the interface states decreases in the range of of 5.31 X 1012 to 4.08 X 1012 cm-2 with the increase of doping content of Sm2O3. The dielectric constant decreases from 1594.8 to 507.5 with the increase of doping content of Sm2O3.

목차
Abstract
1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
References
저자
  • Choon-Woo Nahm(Department of Electrical Engineering, Dongeui University) Corresponding author