This study was performed as a part of serial experiments of applying convolutional neural network(CNN) in determining osteoporosis on panoramic radiograph. The purpose of this study was to investigate how sensitively CNN determine osteoporosis on cropped panoramic radiograph. Panoramic radiographs from 1268 female patients(mean age 45.2 ± 21.1 yrs) were selected for this study. For the osteoporosis group, 633(mean age 72.2 ± 8.5 yrs) were selected, while for the normal group 635(mean age 28.3 ± 7.0 yrs). AlexNet was utilized as CNN in this study. A multiple-column CNN was designed with two rectangular regions of interest on the mandible inferior area. An occluding method was used to analyze the sensitive area in determining osteoporosis on AlexNet. Testing of AlexNet showed accuracy of 99% in determining osteoporosis on panoramic radiographs. AlexNet was sensitive at the area of cortical and cancellous bone of the mandible inferior area including adjacent soft tissue.