With the current trend of the fourth industrial revolution, machine learning technique is increasingly adopted in various water industry fields. In this review paper, recent studies using machine learning to predict flood, water consumption, water quality, and water treatment processes are summarized. In the typical water purification processes such as flocculation, disinfection, and filtration, machine learning was able to present high-accuracy prediction results for complex non-linear mechanisms. Hybrid machine learning methods, combining multiple algorithms, generally outperformed machine learning results using only one algorithm. A more microscopic machine learning approach can provide valuable information to the operators in the water industry.