자율운항선박이 상용화되어 연안을 항해하기 위해서는 해상의 장애물을 탐지할 수 있어야 한다. 연안에서 가장 많이 볼 수 있 는 장애물 중의 하나는 양식장의 부표이다. 이에 본 연구에서는 YOLO 알고리즘을 이용하여 해상의 부표를 탐지하고, 카메라 영상의 기하 학적 해석을 통해 선박으로부터 떨어진 부표의 거리와 방위를 계산하여 장애물을 시각화하는 해상물체탐지시스템을 개발하였다. 1,224장 의 양식장 부표 사진으로 해양물체탐지모델을 훈련시킨 결과, 모델의 Precision은 89.0 %, Recall은 95.0 % 그리고 F1-score는 92.0 %이었다. 얻 어진 영상좌표를 이용하여 카메라로부터 떨어진 물체의 거리와 방위를 계산하기 위해 카메라 캘리브레이션을 실시하고 해상물체탐지시 스템의 성능을 검증하기 위해 Experiment A, B를 설계하였다. 해상물체탐지시스템의 성능을 검증한 결과 해상물체탐지시스템이 레이더보 다 근거리 탐지 능력이 뛰어나서 레이더와 더불어 항행보조장비로 사용이 가능할 것으로 판단된다.
For autonomous ships to be commercialized and be able to navigate in coastal water, they must be able to detect maritime obstacles. One of the most common obstacles seen in coastal area are the farm buoys. In this study, a maritime object detection system was developed that detects buoys using the YOLO algorithm and visualizes the distance and bearing between buoys and the ship through geometric interpretation of camera images. After training the maritime object detection model with 1,224 pictures of buoys, the precision of the model was 89.0%, the recall was 95.0%, and the F1-score was 92.0%. Camera calibration had been conducted to calculate the distance and bearing of an object away from the camera using the obtained image coordinates and Experiment A and B were designed to verify the performance of the maritime object detection system. As a result of verifying the performance of the maritime object detection system, it can be seen that the maritime object detection system is superior to radar in its short-distance detection capability, so that it can be used as a navigational aid along with the radar.