PURPOSES : Fine dust significantly affects the atmospheric environment, and various measures have been implement to reduce it. The aim of this study is to reduce fine dust on roads by implementing porous pavements and a clean road system using the low-impact development technique.
METHODS : We conducted quality tests (draindown, cantabro loss rate, tensile strength ratio, dynamic stability, and indoor permeability coefficient tests) and performance evaluation (dynamic modulus and Hamburg wheel-tracking tests) on the porous asphalt mixture. Subsequently, we constructed a porous pavement road in a test bed and conducted a permeability test. In the test bed, we installed a nozzle, a water tank, and a fluid pump to water the roadside. After the clean road system was completely installed, we measured the concentration of fine dust before and after water was sprayed. Additionally, we conducted a total suspended solids (TSS) test to confirm the reduction in re-suspended dust.
RESULTS : All results from the quality test of the porous asphalt mixture satisfy the standards stipulated by the Ministry of Land, Infrastructure and Transport. Results from the dynamic modulus test show a low plastic deformation resistance but a high fatigue crack resistance. The results from the Hamburg wheel-tracking test satisfy the U.S. Department of Transportation standards. After the porous pavement was constructed, a permeability test was conducted, and the result satisfies the standard value. Using a particle counter, we measured the concentration of fine dust before and after water spraying, and results show 12.08% and 10.23% for PM10 and PM2.5 particles, respectively. The results from the TSS test show that after the initial water spray, almost all re-suspended dust are removed from a road. In unfavorable road conditions, almost all re-suspended dust are removed after a second water spray.
CONCLUSIONS : The results of all of quality tests performed on a porous asphalt mixture satisfy the standards. By applying the results to a test bed, the problem of securing water is solved. Using the clean road system, 12.08% and 10.23% of PM10 and PM2.5 particles are removed, respectively. The system removes PM10 particles (larger particles) more effectively compared with PM2.5 particles. IN the future, we plan to revise the maintenance plan such that the porous pavement can exhibit long-term performance. Because pipe freezing may occur in the winter, we plan to analyze the periodic maintenance plan of the porous pavement and develop a solution to mitigate the issue of freezing pipes in the winter.