본 연구는 표면 세척 시스템을 이용하여 유자의 미생물과 잔류농약 제거 효과를 살펴보았다. 선행 연구로 오징어 먹물을 제거 효과를 보기 위해 스프레이 회전 속도 0.11, 0.42, 0.73 m/s, 수압 0.6, 0.9, 1.2 MPa과 컨베이어 속도 0.046, 0.092, 0.138 m/s 으로 세척 조건을 달리하였다. 오징어 먹물 제거 실험 결과 먹물 제거 효율은 컨베이어 속도와 분사 노즐 회전수와는 높은 상관관계를 나타내었으며 수압의 조건
This study was conducted to assess the effects of the removal of pesticide residues and microorganisms from yuja (Citrus junos Sieb ex Tanaka) using a surface-washing system, under the following washing conditions: 0.11, 0.42, and 0.73 m/s spray rotation speeds; 0.6, 0.9, and 1.2 MPa water pressure and 0.046, 0.092, and 0.138 m/s conveying speeds. Tap-water treatment was used as the control. The washing efficiency when using squid ink was highly correlated with the conveying speed and the spray rotation speed. In addition, the highest washing efficiency was achieved when the water pressure was 0.9 MPa. The microorganisms were reduced to 0.40 log CFU/g for the tap-water treatment, and all the treatments, except those at the conveying speed of 0.138 m/s and the spray rotation speed of 0.11 rpm (6.07 log CFU/g), produced higher removal efficiencies compared with the tap-water treatment. Reductions of 2.20 and 2.05 log CFU/g were achieved at the spray rotation speeds of 0.42 and 0.73, respectively. The largest reductions were observed when the conveying speed was 0.046 m/s. Higher pesticide residue removal efficiency values were obtained at slower conveying speeds and higher spray rotation speeds. Higher than 50% removal efficiency was achieved when the spray rotation speed was 0.046 m/s for spirodichlofen, deltamethrin, benomyl, thiophanate-methyl, and acequinocyl. Especially, the removal efficiency for benomyl and thiophanate-methyl was more than 90%. It can thus be concluded that the pesticide residues in yuja can be effectively reduced by washing the latter with a less-than-0.092-m/s conveying speed and a higher-than-0.42-m/s spray rotation speed.