Global warming and climate changes are the ultimate consequences of increased CO2 volume in the air. Physical activation was used to prepare high-throughput activated carbon from a low-cost date stone. The adsorption performance of activated carbon using fixed bed for CO2 separation was studied. The reliance of temperature, flow rate, and initial CO2 concentration levels on breakthrough behaviour was analysed. The adsorption response was explored in terms of breakthrough and saturation points, adsorption capacity, temperature profiles, utilization factor, and length of mass-transfer zone. Increased temperatures lead to vary the breakthrough periods notably. The vastly steep breakthrough curves reveal satisfactory utilization of bed capacity. LMTZ is varied positively with increased feed rates and temperatures. The high utilization factor of 0.9738 with 1.66 mmol/g CO2 uptake was acquired at 298 K and 0.25 bars. The findings recommend that the carbon prepared from date stone is encouraging to capture CO2 from CO2/ N2 mixture.