논문 상세보기

Reusable, magnetic laser‑induced graphene for efficient removal of organic pollutants from water KCI 등재

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/420838
구독 기관 인증 시 무료 이용이 가능합니다. 5,200원
Carbon Letters (Carbon letters)
한국탄소학회 (Korean Carbon Society)
초록

The hybridization of graphene with magnetic nanoparticles has endowed graphene with increasing interest as the adsorbent for wastewater treatment. However, its fabrication often involves a multi-stepped chemical synthesis process. In this work, we demonstrate a facile, one-step, and solvent-free approach to fabricate Fe3O4 nanoparticle-anchored Laser-Induced Graphene ( Fe3O4@LIG) as an efficient adsorbent by direct laser irradiation on a ferric acetylacetonate containing polybenzoxazine film. Raman and X-ray diffraction analysis confirm the graphene component in the adsorbent, and the morphology characterizations show that Fe3O4 nanoparticles are distributed uniformly on LIG with hierarchical meso- and macro-porous structures. Adsorption experiments indicate that Fe3O4@ LIG can adsorb methylene blue (MB) from aqueous solutions in a fast and effective manner, with a maximum adsorption capacity up to 350.9 mg/g. The adsorption kinetics and isotherms are also investigated, which are well-described by the pseudo-second-order model and Langmuir model, respectively. Additionally, Fe3O4@ LIG is also demonstrated with the efficient removal of a variety of organic solvents from water. The favorable adsorption behavior of Fe3O4@ LIG is attributed to its unique porous structure and the molecular interactions with adsorbates. On the other hand, Fe3O4@ LIG has high magnetic property, and therefore, it could be easily recovered from water and well regenerated for repeated use. With the efficient adsorption of organic pollutants, magnetic separability, and good

목차
    Abstract
        Graphical abstract
    1 Introduction
    2 Experimental section
        2.1 Materials
        2.2 Preparation of Fe3O4@LIG
        2.3 Characterization of Fe3O4@LIG
        2.4 Methylene blue (MB) adsorption
        2.5 Organic solvents adsorption
    3 Results and discussion
        3.1 Characterization of Fe3O4@LIG
        3.2 Methylene blue adsorption on Fe3O4@LIG
        3.3 Organic solvent adsorption on Fe3O4@LIG
        3.4 Adsorption performance and mechanism
    4 Conclusion
    Acknowledgements 
    References
저자
  • Ye Jiang(School of Material Science and Engineering, Nanchang University, Ningbo Institute of Materials Technology and Engineering)
  • Sijie Wan(School of Material Science and Engineering, Nanchang University)
  • Weiwei Zhao(Ningbo Institute of Materials Technology and Engineering)
  • Wenjie Yu(Ningbo Institute of Materials Technology and Engineering, University of Chinese Academy of Sciences)
  • Shuaipeng Wang(Ningbo Institute of Materials Technology and Engineering)
  • Zeqi Yu(Ningbo Institute of Materials Technology and Engineering, University of Chinese Academy of Sciences)
  • Qiu Yang(Ningbo New Material Testing and Evaluation Center Co., Ltd)
  • Weihua Zhou(School of Material Science and Engineering, Nanchang University)
  • Xiaoqing Liu(Ningbo Institute of Materials Technology and Engineering)