본 연구는 수직 벽체형 콘크리트 구조물의 정밀안전진단을 위한 외관조사시 고품질 정밀영상을 자동화된 방식으로 획득하여 균열손상을 탐지하고 시설물의 상태를 평가하기 위하여 개발된 등벽드론 탑재형 균열진단 시스템에 대한 것이다. 본 논문에서는 영상기반 균열진단 시스템을 이용한 정밀영상 획득기술, 자동화된 영상처리 알고리즘을 이용한 데이터 처리 기법을 제시하였으며, 실험적으로 도출된 지상표본거리를 기반으로 영상처리 자동화 알고리즘을 이용하여 생성된 균열모사 시험벽체의 평면전개 이미지 상 균열손상의 위치 정확도를 평가 분석하였다. 평가분석 결과, 가로축 길이 대비 최대 1.1%, 세로축 길이 대 비 최대 1.4%의 오차율을 보이는 것으로 나타났다. 제안된 영상 내 픽셀 좌표와 지상표본거리를 기반으로 균열손상의 위치를 추정하는 기법은 실측 좌표 대비 평균 1.0% 이하의 위치 오차를 가지는 것으로 평가되었다. 최종적으로 영상기반 진단과 긴급 보수와 같은 일반적인 시설물의 유지관리에 요구되는 위치 정확도를 확보하고 있는 것으로 분석되었다.
This study is about a crack diagnosis system mounted on a wall-climbing drone developed to detect crack damages and evaluate the condition of facilities by acquiring high-quality precision images in an automated manner during visual inspection for precise safety diagnosis of vertical wall-type concrete structures. In this paper, it is presented a precision image acquisition technology using an image-based crack diagnosis system and a data processing technique using an automated image processing algorithm, and evaluated and analyzed the position accuracy of crack damages on a concrete wall image generated using an image processing automation algorithm based on the experimentally derived ground sample distance. The results of the evaluation analysis show that the position errors are up to 1.1% for the length of the horizontal axis and up to 1.4% for the length of the vertical axis. The proposed technique for estimating the location of crack damage based on the pixel coordinates in the image and the ground sample distance was evaluated to have an average location error of 1.0% or less compared to the ground truth data. Finally, it was analyzed that the position accuracy required for maintenance purposes such as image-based diagnosis and emergency repair is secured.