논문 상세보기

이방성 재료의 소성변형 해석을 위한 고정점 축차 KCI 등재

Fixed-point Iteration for the Plastic Deformation Analysis of Anisotropic Materials

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/421556
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국분말야금학회지 (Journal of Korean Powder Metallurgy Institute)
한국분말재료학회(구 한국분말야금학회) (Korean Powder Metallurgy Institute)
초록

A fixed-point iteration is proposed to integrate the stress and state variables in the incremental analysis of plastic deformation. The Conventional Newton–Raphson method requires a second-order derivative of the yield function to generate a complicated code, and the convergence cannot be guaranteed beforehand. The proposed fixed-point iteration does not require a second-order derivative of the yield function, and convergence is ensured for a given strain increment. The fixed-point iteration is easier to implement, and the computational time is shortened compared with the Newton–Raphson method. The plane-stress condition is considered for the biaxial loading conditions to confirm the convergence of the fixed-point iteration. 3-dimensional tensile specimen is considered to compare the computational times in the ABAQUS/explicit finite element analysis.

목차
Abstract
1. 서 론
2. Hill의 이방성 2차 항복함수
3. 소성변형에서의 고정점 축차 및 수렴조건
4. 평면 응력 조건에서의 수렴 테스트
5. 3차원 유한요소 해석
6. 결 론
감사의 글
References
저자
  • 양승용(한국기술교육대학교 기계공학부) | Seung-Yong Yang (Korea University of Technology and Education, Chonan, Chungnam, Republic of Korea)
  • 김정한(한밭대학교 신소재공학과) | Jeoung Han Kim (Hanbat National University, Daejeon, Republic of Korea) Corresponding author