In this study, considering the expansion/contraction behavior of the upper structure at all times and the abnormal behavior of the receiving friction elements that allow horizontal movement during earthquakes, a port receiving test body simulating the protrusion of the friction elements was created and the modulus performance was evaluated. In order to confirm the influence of the friction element's projection, the friction element's degree of separation was divided into four stages, and the shear behavior of the test specimen and the friction coefficient were confirmed. As a result of the experiment, it was found that the friction load increases as the protrusion degree of the friction element increases. On the other hand, as the degree of protrusion of the coefficient of friction increases, the coefficient of friction also increases. It was confirmed that damage to the friction elements during use increases the coefficient of friction, hinders smooth expansion and contraction of the upper structure, and causes stress concentration at the fixed-end support.