최근 원자력 지진 PSA(Probabilistic Safety Assessment)를 토대로 산업시설물의 지진 PSA를 수행하는 연구가 진행되었다. 해당 연 구는 원자력 발전소와 산업시설물의 차이를 파악하고, 최종적으로 운영정지를 목표로 하는 고장수목(Fault Tree)를 구축한 후 시각적 확률도구인 베이지안 네트워크(Bayesian Network, BN)으로 변환하였다. 본 연구는 선행연구를 기반으로 지진으로 유발된 구조손상 으로 인해 발생 가능한 화재・폭발에 대해 PSA를 수행하고자 하였다. 이를 위해 화재・폭발을 사건수목(Event Tree)으로 표현하고, BN 으로 변환하였다. 변환된 BN은 화재・폭발 모듈로서 선행연구에서 제시된 고장수목 기반 BN과 연계되어 최종적으로 지진 유발 화재・ 폭발 PSA를 수행할 수 있는 BN 기반 방법론이 개발되었다. 개발된 BN을 검증하기위해 수치예제로서 가상의 가스플랜트 Plot Plan을 생성하였고, 가스플랜트의 설비 종류가 구체적으로 반영된 대규모 BN을 구축하였다. 해당 BN을 이용하여 지진 규모에 따른 전체시 스템의 운영정지 확률 및 하위시스템들의 고장확률 산정과 더불어 역으로 전체시스템이 운영 정지되었을 때 하위시스템들의 영향도 분석과 화재・폭발 가능성을 산정하여 다양한 의사결정을 수행할 수 있음을 제시함으로써 그 우수성을 확인하였다.
Phayathonzu temple in Myanmar was made of masonry bricks, and so it was vulnerable to lateral load such as earthquake. Especially, it has many difficulties in structural modeling and dynamic analysis because the discontinuous characteristics of masonry structure should be considered. So, it is necessary to provide the seismic performance evaluation technology through the inelastic dynamic modeling and analysis under earthquake loads for the safety security of masonry brick temple. Therefore, this study analyzes the seismic behavior characteristics and evaluates the seismic performance for the 479 structure with many cracks and deformations. Through the evaluation results, we found out the structural weak parts on earthquake loads.
There are growing concerns that the recently implemented Earthquake Early Warning service is overestimating the rapidly provided earthquake magnitudes (M). As a result, the predicted damages unnecessarily activate earthquake protection systems for critical facilities and lifeline infrastructures that are far away. This study is conducted to improve the estimation accuracy of M by incorporating the observed S-wave seismograms in the near source region after removing the site effects of the seismograms in real time by filtering in the time domain. The ensemble of horizontal S-wave spectra from at least five seismograms without site effects is calculated and normalized to a hypocentric target distance (21.54 km) by using the distance attenuation model of Q(f)=348f0.52 and a cross-over distance of 50 km. The natural logarithmic mean of the S-wave ensemble spectra is then fitted to Brune’s source spectrum to obtain the best estimates for M and stress drop (SD) with the fitting weight of 1/standard deviation. The proposed methodology was tested on the 18 recent inland earthquakes in South Korea, and the condition of at least five records for the near-source region is sufficiently fulfilled at an epicentral distance of 30 km. The natural logarithmic standard deviation of the observed S-wave spectra of the ensemble was calculated to be 0.53 using records near the source for 1~10 Hz, compared to 0.42 using whole records. The result shows that the root-mean-square error of M and ln(SD) is approximately 0.17 and 0.6, respectively. This accuracy can provide a confidence interval of 0.4~2.3 of Peak Ground Acceleration values in the distant range.
유체-구조물-지반 상호작용을 고려한 액체저장탱크의 유한요소 모형을 제시하고, 비선형 지진응답 해석기법을 정식화한다. 탱크 구조물은 기하 및 재료 비선형 거동을 고려할 수 있는 쉘 요소로 모델링한다. 유체의 거동은 acoustic 요소로 구현하고, interface 요소 를 사용하여 구조물과 결합한다. 지반-구조물 상호작용을 고려하기 위해 지반의 근역과 원역을 각각 solid 요소와 perfectly matched discrete layer로 모델링한다. 예제 20만 kl급 액체저장탱크의 지진취약도 해석에 적용하여, 유연한 지반에 구조물이 놓인 경우 부지에 서의 암반노두운동의 증폭 및 필터링으로 인해 지진취약도의 중앙값과 대수 표준편차가 감소하는 것을 관찰할 수 있다.
As climate change and population growth raise the likelihood of natural disasters, it becomes crucial to comprehend and mitigate these risks in vital infrastructure systems, especially nuclear power plants (NPPs). This research addresses the necessity for evaluating multiple hazards by concentrating on slope failures triggered by earthquakes near NPPs over a timeframe extending up to a return period of 100,000 years. Utilizing a Geographical Information System (GIS) and Monte Carlo Simulation (MCS), the research conducts a comprehensive fragility assessment to predict failure probability under varying ground-shaking conditions. According to the Newmark displacement method, factors such as Peak Ground Acceleration (PGA), slope angle, soil properties, and saturation ratio play significant roles in determining slope safety outcomes. The investigation aims to enhance understanding seismic event repercussions on NPP-adjacent landscapes, providing insights into long-term dynamics and associated risks. Results indicate an increase in slope vulnerability with longer return periods, with distinct instances of slope failures at specific return periods. This analysis not only highlights immediate seismic impacts but also underscores the escalating risk of slope displacement across the extended return period scales, crucial for evaluating long-term stability and associated hazards near nuclear infrastructure.
Due to the recent increase in domestic seismic activity and the proliferation of PC structure buildings, there is a pressing need for a fundamental study to develop and revise the design criteria for Half-PC slabs. In this study, we propose criteria for determining the rigid diaphragm based on the aspect ratio of Half-PC slabs and investigate the structural effects based on the presence of chord element installation. This study concluded that Half-PC slabs with an aspect ratio of 3.0 or lower can be designed as rigid diaphragms. When chord elements are installed, it is possible to design Half-PC slabs with an aspect ratio of 4.0 or lower as rigid diaphragms. In addition, the increase in the aspect ratio of the Half-PC slab leads to a decrease in the in-plane stiffness of the structure, confirming that the reduction effect of the maximum displacement in force direction (max ) due to the increase in wall stiffness is predominantly influenced by flexibility.
In the case of the Pohang earthquake, which had a magnitude of 5.4 in 2017, geotechnical damages such as liquefaction and ground settlement occurred. The need for countermeasures has emerged, and experimental research in the Pohang area has continued. This study collected undisturbed samples from damaged fine-grained soil areas where ground settlement occurred in Pohang. Cyclic tri-axial tests for identifying the dynamic characteristics of soils were performed on the undisturbed samples, and the results were analyzed to determine the cause of ground settlement. As a result of the study, it was determined that in the case of fine-grained soils, ground settlement occurred because the seismic load as an external force was relatively more significant than the shear resistance of the very soft fine-grained soils, rather than due to an increase in excess pore water pressure.
지진취약도를 산정하기 위해서는 목표 부지의 특성을 제대로 표현할 수 있는 입력 지진파의 산정이 중요하다. 본 논문에서는 국내 외 강진 및 중‧약진 지역에서의 입력 지진파에 대한 단자유도 모델의 지진취약도를 분석하였다. 분석을 위한 첫 번째 단계로, 국외 강 진 기록 중 근/원거리에서 측정한 2개의 입력 지진파 세트와 국내 중·약진 지역 특성에 적합한 입력 지진파 2개의 세트, 총 4개의 입력 지진파 세트를 선정하였다. 대상 구조물로는 3가지 고유주기에 대한 비선형 단자유도 모델을 적용하였고, 취약도 분석을 위해 증분동 적해석을 이용하였다. 또한, 4가지 손상 상태를 정의하고, 손상 상태 각각에 대해 4가지 입력 지진파 세트의 고유주기별 지진취약도 결과를 제시하였다.
In light of recent significant seismic events in Korea and worldwide, there is an urgent need to reevaluate the adequacy of seismic assessments conducted during facility construction. This study reexamines the ongoing viability of the Safety Shutdown Earthquake (SSE) criteria assessment for the Combustible Radioactive Waste Treatment Facility (CRWTF) site at the Korea Atomic Energy Research Institute (KAERI), originally established in 1994. To validate the SSE assessment, we delineated 13 seismic structure zones within the Korean Peninsula and employed two distinct methodologies. Initially, we updated earthquake occurrence data from 1994 to the present year (2023) to assess changes in the site’s horizontal maximum earthquake acceleration (g). Subsequently, we conducted a comparative analysis using the same dataset, contrasting the outcomes derived from the existing distance attenuation equation with those from the most recent attenuation equations to evaluate the reliability of the applied attenuation model. The Safety Shutdown Earthquake (SSE) criterion of 0.2 g remains unexceeded, even when considering recent earthquake events since the original evaluation in 1994. Furthermore, when applying various assessment equations developed subsequently, the maximum value obtained from the previously utilized ‘Donvan and Bornstein’ attenuation equation is 0.1496 g, closely resembling the outcome derived from the recently employed ‘Lee’ reduction equation of 0.1451 g. The SSE criteria for CRWTF remain valid in the current context, even in light of recent seismic occurrences such as the 2016 Gyeongju earthquake. Additionally, the attenuation equation employed in the evaluation consistently yields conservative results when compared to methodologies used in recent assessments. Consequently, the existing SSE criteria remain valid at present. This study is expected to serve as a valuable reference for confirming the SSE criterion assessment of similarly constructed facilities within KAERI.
When an earthquake occurs, the severity of damage is determined by natural factors such as the magnitude of the earthquake, the epicenter distance, soil properties, and type of the structures in the affected area, as well as the socio-economic factors such as the population, disaster prevention measures, and economic power of the community. This study evaluated the direct economic loss due to building damage and the community’s recovery ability. Building damage was estimated using fragility functions due to the design earthquake by the seismic design code. The usage of the building was determined from the information in the building registrar. Direct economic loss was evaluated using the standard unit price and estimated building damage. The standard unit price was obtained from the Korean Real Estate Board. The community’s recovery capacity was calculated using nine indicators selected from regional statistical data. After appropriate normalization and factor analysis, the recovery ability score was calculated through relative evaluation with neighboring cities.
In this study, in order to establish a strategy for developing an fire following earthquake risk assessment method that can utilize domestic public databases(building datas, etc.), the method of calculating the ignition and fire-spread among the fire following earthquake risk assessment methodologies proposed by past researchers is investigated After investigating and analyzing the methodology used in the HAZUS-MH earthquake model in the United States and the fire following earthquake risk assessment methodology in Japan, based on this, a database such as a domestic building data utilized to an fire following earthquake risk assessment method suitable for domestic circumstances (planned) was suggested.
This study proposes a methodology for assessing seismic liquefaction hazard by implementing high-resolution three-dimensional (3D) ground models with high-density/high-precision site investigation data acquired in an area of interest, which would be linked to geotechnical numerical analysis tools. It is possible to estimate the vulnerability of earthquake-induced geotechnical phenomena (ground motion amplification, liquefaction, landslide, etc.) and their triggering complex disasters across an area for urban development with several stages of high-density datasets. In this study, the spatial-ground models for city development were built with a 3D high-precision grid of 5 m x 5 m x 1 m by applying geostatistic methods. Finally, after comparing each prediction error, the geotechnical model from the Gaussian sequential simulation is selected to assess earthquake-induced geotechnical hazards. In particular, with seven independent input earthquake motions, liquefaction analysis with finite element analyses and hazard mappings with LPI and LSN are performed reliably based on the spatial geotechnical models in the study area. Furthermore, various phenomena and parameters, including settlement in the city planning area, are assessed in terms of geotechnical vulnerability also based on the high-resolution spatial-ground modeling. This case study on the high-precision 3D ground model-based zonations in the area of interest verifies the usefulness in assessing spatially earthquake-induced hazards and geotechnical vulnerability and their decision-making support.
As a result of active geological investigation of faults in Korea, many Quaternary faults have been identified and some of them were judged to have potential to generate earthquakes. Those faults need to be considered as additional seismic sources in the seismic hazard analysis. When a fault is introduced as a new source, the earthquakes generated by the fault should be removed from the area sources that include any part of the fault, to avoid double counting. In practice, however, double counting cannot completely be avoided as the complete separation of the fault-generated earthquakes from the area sources is impossible due to uncertainties related to the earthquake location, subsurface structures of faults, etc. When a new fault source is introduced, the only constraint is the invariance of earthquake frequency. The maximum earthquake and the Richter-b value should also be subject to change, but there are no competent approaches to estimate the change due to incomplete separation of earthquakes. To gain insight into the effect of a new fault source, an example calculation of the seismic hazard were carried out. The example calculation shows that addition of a new fault source centers seismic hazard around the fault source.
It is essential to determine a proper earthquake time history as a seismic load in a seismic design for a critical structure. In the code, a seismic load should satisfy a design response spectrum and include the characteristic of a target fault. The characteristic of a fault can be represented by a definition of a type of possible earthquake time history shape that occurred in a target fault. In this paper, the pseudo-basis function is proposed to be used to construct a specific type of earthquake, including the characteristic of a target fault. The pseudo-basis function is derived from analyzing the earthquake time history of specific fault harmonic wavelet transform. To show the feasibility of this method, the proposed method was applied to the faults causing the Gyeong-Ju ML5.8 and Pohang ML5.3 earthquakes.
Considering the non-linear behavior of structure and soil when evaluating a nuclear power plant's seismic safety under a beyond-design basis earthquake is essential. In order to obtain the nonlinear response of a nuclear power plant structure, a time-domain SSI analysis method that considers the nonlinearity of soil and structure and the nonlinear Soil-Structure Interaction (SSI) effect is necessary. The Boundary Reaction Method (BRM) is a time-domain SSI analysis method. The BRM can be applied effectively with a Perfectly Matched Layer (PML), which is an effective energy absorbing boundary condition. The BRM has a characteristic that the magnitude of the response in far-field soil increases as the boundary interface of the effective seismic load moves outward. In addition, the PML has poor absorption performance of low-frequency waves. For this reason, the accuracy of the low-frequency response may be degraded when analyzing the combination of the BRM and the PML. In this study, the accuracy of the analysis response was improved by adjusting the PML input parameters to improve this problem. The accuracy of the response was evaluated by using the analysis response using KIESSI-3D, a frequency domain SSI analysis program, as a reference solution. As a result of the analysis applying the optimal PML parameter, the average error rate of the acceleration response spectrum for 9 degrees of freedom of the structure was 3.40%, which was highly similar to the reference result. In addition, time-domain nonlinear SSI analysis was performed with the soil's nonlinearity to show this study's applicability. As a result of nonlinear SSI analysis, plastic deformation was concentrated in the soil around the foundation. The analysis results found that the analysis method combining BRM and PML can be effectively applied to the seismic response analysis of nuclear power plant structures.
Based on the random-vibration-theory methodology, dynamic responses of nuclear facilities subjected to obliquely incidental and incoherent earthquake ground motions are calculated. The spectral power density functions of the 6-degree-of-freedom motions of a rigid foundation due to the incoherent ground motions are obtained with the local wave scattering and wave passage effects taken into consideration. The spectral power density function for the pseudo-acceleration of equipment installed on a structural floor is derived. The spectral acceleration of the equipment or the in-structure response spectrum is then estimated using the peak factors of random vibration. The approach is applied to nuclear power plant structures installed on half-spaces, and the reduction of high-frequency earthquake responses due to obliquely incident incoherent earthquake ground motions is examined. The influences of local wave scattering and wave passage effects are investigated for three half-spaces with different shear-wave velocities. When the shear-wave velocity is sufficiently large like hard rock, the local wave scattering significantly affects the reduction of the earthquake responses. In the cases of rock or soft rock, the earthquake responses of structures are further affected by the incident angles of seismic waves or the wave passage effects.
With the increase of temporarily-stored radioactive waste in Korea, the disposal of radioactive waste in a deep geological repository, which is located in crystalline rock at a depth of hundreds of meters below the ground level, has received great attention nowadays. To ensure the permanent isolation of radionuclides from the human and surrounding ecosystems, the safety assessment for the high-level radioactive waste disposal facilities is essential. For the reliable safety assessment of fractured rock, it is especially important to input proper hydraulic properties of fractures such as aperture and hydraulic conductivity, which can directly affect the fluid flow and radionuclide transport. Meanwhile, it has become important to consider sudden fault behavior caused by an earthquake with the recent occurrence of high-intensity earthquakes in the Korean Peninsula. The sudden fault behavior can induce the changes of the hydraulic properties of fractures. Since the changes of the hydraulic properties directly affects to the radionuclide transport in the fractured rock, it is important to estimate the effect of earthquake-induced stress change on hydraulic properties of fractures in the perspective of long-term safety assessment. In this study, the effect of an earthquake on the hydraulic properties of fractures was explored by a numerical approach. The static Coulomb stress change after the earthquake was calculated using software ‘Coulomb 3’ developed by United States Geological Survey (USGS) with the assumption for several mechanical properties such as Young’s modulus, Poisson’s ratio and effective coefficient of friction. The final stress after earthquake occurrence was calculated as the sum of the initial stress and the stress change. Thereafter, the normalized transmissivity of fracture after the earthquake was calculated using the final stress from the stress-transmissivity relationship. Using the methodology for calculating fracture transmissivity change induced by the earthquake developed in this study, the effect of several factors, such as the earthquake magnitude and the distance between fracture and epicenter, was additionally explored. The newly developed methodology will be applied to the processbased total system performance assessment framework (APro) being developed by KAERI, and this study is expected to be helpful for the safety assessment considering long-term evolution phenomena including earthquakes.
In assessing the seismic safety of nuclear power plants, it is essential to analyze the structures using the observed ground motion. In particular, spatial variation in which the characteristics of the ground motion record differ may occur if the location is different within the site and even if the same earthquake is experienced. This study analyzed the spatial variation characteristics of the ground motion observed at the structure and site using the earthquake records measured at the Hamaoka nuclear power plant. Even if they were located on the same floor within the same unit, there was a difference in response depending on the location. In addition, amplification was observed in Unit 5 compared to other units, which was due to the rock layer having a slower shear wave velocity than the surrounding bedrock. Significant differences were also found in the records of the structure’s foundation and the free-field surface. Based on these results, the necessity of considering spatial variation in the observed records was suggested.