검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 53

        1.
        2024.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The ductility of the system based on the capacity of each structural member constituting the seismic force-resisting system is a significant factor determining the structure’s seismic performance. This study aims to provide a procedure to supplement the current seismic design criteria to secure the system’s ductility and improve the seismic performance of the steel ordinary moment frames. For the study, a nonlinear analysis was performed on the 9- and 15-story model buildings, and the formation of collapse mechanisms and damage distribution for dynamic loads were analyzed. As a result of analyzing the nonlinear response and damage distribution of the steel ordinary moment frame, local collapse due to the concentration of structural damage was observed in the case where the influence of the higher mode was dominant. In this study, a procedure to improve the seismic performance and avoid inferior dynamic response was proposed by limiting the strength ratio of the column. The proposed procedure effectively improved the seismic performance of steel ordinary moment frames by reducing the probability of local collapse.
        4,000원
        2.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The demand for high-strength steel is rising due to its economic efficiency. Low-cycle fatigue (LCF) tests have been conducted to investigate the nonlinear behaviors of high-strength steel. Accurate material models must be used to obtain reliable results on seismic performance evaluation using numerical analyses. This study uses the combined hardening model to simulate the LCF behavior of high-strength steel. However, it is challenging and complex to determine material model parameters for specific high-strength steel because a highly nonlinear equation is used in the model, and several parameters need to be resolved. This study used the particle swarm algorithm (PSO) to determine the model parameters based on the LCF test data of HSA 650 steel. It is shown that the model with parameter values selected from the PSO accurately simulates the measured LCF curves.
        4,000원
        3.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The 2017 Pohang earthquake afflicted more significant economic losses than the 2016 Gyeongju earthquake, even if these earthquakes had a similar moment magnitude. This phenomenon could be due to local site conditions that amplify ground motions. Local site effects could be estimated from methods using the horizontal-to-vertical spectral ratio, standard spectral ratio, and the generalized inversion technique. Since the generalized inversion method could estimate the site effect effectively, this study modeled the site effects in the Korean peninsula using the generalized inversion technique and the Fourier amplitude spectrum of ground motions. To validate the method, the site effects estimated for seismic stations were tested using recorded ground motions, and a ground motion prediction equation was developed without considering site effects.
        4,000원
        4.
        2022.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The columns of older reinforced concrete (RC) buildings generally have limited reinforcement details. Thus, they could be vulnerable to earthquake ground motions, leading to partial or complete building collapse. In this study, high-performance fiber-reinforced cementitious composite (HPFRCC) was applied to RC columns to improve their seismic behavior. Experimental tests were conducted with two full-sized specimens with limited reinforcement details, including short lap splices, while unidirectional loadings were applied to the specimens. The seismic behavior of RC columns was substantially improved by using HPFRCC.
        4,000원
        5.
        2021.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Existing old reinforced concrete buildings could be vulnerable to earthquakes because they were constructed without satisfying seismic design and detail requirements. In current seismic design standards, the target collapse probability for a given Maximum Considered Earthquake (MCE) ground-shaking hazard is defined as 10% for ordinary buildings. This study aims to estimate the collapse probabilities of a three-story, old, reinforced concrete building designed by only considering gravity loads. Four different seismic design categories (SDC), A, B, C, and D, are considered. This study reveals that the RC building located in the SDC A region satisfies the target collapse probability. However, buildings located in SDC B, C, and D regions do not meet the target collapse probability. Since the degree of exceedance of the target probability increases with an increase in the SDC level, it is imminent to retrofit non-ductile RC buildings similar to the model building. It can be confirmed that repair and reinforcement of old reinforced concrete buildings are required.
        4,000원
        6.
        2020.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In seismic design standards such as KDS 41 17 00 and ASCE 7, three procedures are provided to estimate seismic demands: equivalent lateral force (ELF), response spectrum analysis (RSA), and response history analysis (RHA). In this study, two steel special moment frames (SMFs) were designed with ELF and RSA, which have been commonly used in engineering practice. The collapse probabilities of the SMFs were evaluated according to FEMA P695 methodology. It was observed that collapse probabilities varied significantly in accordance with analysis procedures. SMFs designed with RSA (RSA-SMFs) had a higher probability of collapse than SMFs designed with ELF (ELFSMFs). Furthermore, RSA-SMFs did not satisfy the target collapse probability specified in ASCE 7-16 whereas ELF-SMFs met the target probability.
        4,000원
        7.
        2020.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, two full-scale gravity load-designed reinforced concrete corner beam-column joints were tested by being subjected to uniand bi-directional cyclic lateral loading. The test variable was loading type: uni- or bi-directional loading. To investigate the effect of the loading type on the cyclic behavior of joint specimens, damage progression, force-deformation relation, contribution of joint deformation to total drift, joint stress-strain response, and cumulative energy dissipation were investigated. The test data suggest that bidirectional loading can amplify damage accumulation in the joint region.
        4,000원
        8.
        2020.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lightly reinforced concrete (RC) moment frames may suffer significant damage during large earthquake events. Most buildings with RC moment frames were designed without considering seismic loads. The load-displacement response of gravity load designed frames could be altered by masonry infill walls. The objective of this study is to investigate the load-displacement response of gravity load designed frames with masonry infill walls. For this purpose, three-story gravity load designed frames with masonry infill walls were considered. The masonry infilled RC frames demonstrated larger lateral strength and stiffness than bare RC frames, whereas their drift capacity was less than that of bare frames. A specimen with a partial-height infill wall showed the least drift capacity and energy dissipation capacity. This specimen failed in shear, whereas other specimens experienced a relatively ductile failure mode (flexure-shear failure).
        4,000원
        9.
        2020.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Reinforced concrete (RC) buildings built in the 1980s are vulnerable to seismic behavior because they were designed without any consideration of seismic loads. These buildings have widely spaced transverse reinforcements and a short lap splice length of longitudinal reinforcements, which makes them vulnerable to severe damage or even collapse during earthquakes. The purpose of this study is to investigate the impact of bidirectional lateral loads on RC columns with deficient reinforcement details. An experimental test was conducted for two full-scale RC column specimens. The test results of deficient RC columns revealed that bidirectional loading deteriorates the seismic capacity when compared with a column tested unidirectionally. Modeling parameters were extracted from the tested load-displacement response and compared with those proposed in performance-based design standards. The modeling parameters proposed in the standards underestimated the deformation capacity of tested specimens by nearly 50% and overestimated the strength capacity by 15 to 20%.
        4,000원
        10.
        2020.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The stochastic point-source model has been widely used in generating artificial ground motions, which can be used to develop a ground motion prediction equation and to evaluate the seismic risk of structures. This model mainly consists of three different functions representing source, path, and site effects. The path effect is used to emulate decay in ground motion in accordance with distance from the source. In the stochastic point-source model, the path attenuation effect is taken into account by using the geometrical attenuation effect and the inelastic attenuation effect. The aim of this study is to develop accurate equations of ground motion attenuation in the Korean peninsula. In this study, attenuation was estimated and validated by using a stochastic point source model and observed ground motion recordings for the Korean peninsula.
        4,000원
        11.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Diagonally reinforced concrete coupling beams (DRCBs) have been widely adopted in reinforced concrete (RC) bearing wall systems. DRCBs are known to act as a fuse element dissipating most of seismic energies imparted to the bearing wall systems during earthquakes. Despite such importance of DRCBs, the damage estimation of such components and the corresponding consequences within the knowledge of performance based seismic design framework is not well understood. In this paper, drift-based fragility functions are developed for in-plane loaded DRCBs. Fragility functions are developed to predict the damage and to decide the repair method required for DRCBs subjected to earthquake loading. Thirty-seven experimental results are collected from seventeen published literatures for this effort. Drift-based fragility functions are developed for four damage states of DRCBs subjected to cyclic and monotonic loading associated with minor cracking, severe cracking, onset of strength loss, and significant strength loss. Damage states are defined in a consistent manner. Cumulative distribution functions are fit to the empirical data and evaluated using standard statistical methods.
        4,000원
        12.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Many reinforced concrete (RC) buildings constructed prior to 1980's lack important features guaranteeing ductile response under earthquake excitation. Structural components in such buildings, especially columns, do not satisfy the reinforcement details demanded by current seismic design codes. Columns with deficient reinforcement details may suffer significant damage when subjected to cyclic lateral loads. They can also experience rapid lateral strength degradation induced by shear failure. The objective of this study is to accurately simulate the load-deformation response of RC columns experiencing shear failure. In order to do so, model parameters are calibrated to the load-deformation response of 40 RC column specimens failed in shear. Multivariate stepwise regression analyses are conducted to develop the relationship between the model parameters and physical parameters of RC column specimens. It is shown that the proposed predictive equations successfully estimated the model parameters of RC column specimens with great accuracy. The proposed equations also showed better accuracy than the existing ones.
        4,200원
        13.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Pohang earthquake with a magnitude of 5.4 occurred on November 15, 2018. The epicenter of this earthquake located in south-east region of the Korean peninsula. Since instrumental recording for earthquake ground motions started in Korea, this earthquake caused the largest economic and life losses among past earthquakes. Korea is located in low-to moderate seismic region, so that strong motion records are very limited. Therefore, ground motions recorded during the Pohang earthquake could have valuable geological and seismological information, which are important inputs for seismic design. In this study, ground motions associated by the 2018 Pohang earthquake are generated using the point source model considering domestic geological parameters (magnitude, hypocentral distance, distancefrequency dependent decay parameter, stress drop) and site amplification calculated from ground motion data at each stations. A contour map for peak ground acceleration is constructed for ground motions generated by the Pohang earthquake using the proposed model.
        4,000원
        14.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Diagonally reinforced concrete coupling beams (DRCB) play an important role in coupled shear wall systems since these elements dissipate most of seismic input energy under earthquake loading. For reliable seismic performance evaluation using nonlinear response history analysis, it is important to use an accurate analytical model for DRCBs. In this study, the Pinching4 model is used as a base model to simulate the cyclic behavior of DRCBs. For simulating the cyclic behavior of DRCBs using the Pinching4 model, the analytical parameters for backbone curve, pinching and cyclic deterioration in strength and stiffness should be computed. To determine the proper values of the constituent analytical parameters efficiently and accurately, this study proposes the empirical equations for the analytical parameters using regression analyses. It is shown that the hysteretic behavior of coupling beams can be simulated efficiently and accurately using the proposed numerical model with the proposed empirical equations of model parameters.
        4,000원
        15.
        2017.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The coupled shear wall system with coupling beams is an efficient structural system for high-rise buildings because it can provide excellent ductility and energy dissipation to the buildings. The objective of this study is to simulate the hysteretic behavior of diagonally reinforced concrete coupling beams including pinching and cyclic deteriorations in strength and stiffness using a numerical model. For this purpose, coupling beams are modeled with an elastic beam element and plastic spring element placed at the beam ends. Parameters for the analytical model was calibrated based on the test results of 6 specimens for diagonally reinforced concrete coupling beams. The analytical model with calibrated model parameters is verified by comparing the hysteretic curves obtained from analysis and experimental tests.
        4,000원
        16.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The WUF-W moment connection is a pre-qualified connection that can be used for special moment frames specified in current seismic design specifications. Since the stress distribution near the connection varies according to access hole configuration, the cyclic performance of WUF-W connections is strongly affected by the access hole configurations. To evaluate the connection performance according to various access hole configurations, it is expensive to conduct experiments with many connection specimens. Instead, finite element analyses (FEA) can be performed. Throughout the FEA, stress and strain distribution in the connection can be monitored at each loading step. The purpose of this study is to construct nonlinear 3-dimensional FE models for accurately predicting the cyclic behavior of WUF-W connections. For predicting connection fracture using FEA, an appropriate response index detecting the incidence of connection rupture is proposed.
        4,000원
        17.
        2017.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Current seismic design provisions such as ASCE 7-10 provide criteria for selecting ground motions for conducting response history analysis. This study is the sequel of a companion paper (I – Ground Motion Selection) for assessment of the ASCE 7-10 criteria. To assess of the ASCE 7-10 criteria, nonlinear response history analyses of twelve single degree of freedom (SDF) systems and one multi-degree of freedom (MDF) system are conducted in this study. The results show that the target seismic demands for SDF can be predicted using the mean seismic demands over seven and ten ground motions selected according to the proposed method within an error of 30% and 20%, respectively
        4,000원
        18.
        2017.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For estimating the seismic demand of buildings, most seismic design provisions permit conducting linear and nonlinear response history analysis. In order to obtain reliable results from response history analyses, a proper selection of input ground motions is required. In this study, an accurate algorithm for selecting and scaling ground motions is proposed, which satisfies the ASCE 7-10 criteria. In the proposed algorithm, a desired number of ground motions are sequentially scaled and selected from a ground motion library without iterations.
        4,000원
        19.
        2017.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study is to propose a simple and accurate analytical model for HSS braces. For this purpose, a physical theory model is adopted. Rectangular hollow section steel (HSS) braces are considered in this study. To accurately simulate the cyclic behavior of braces using the physical theory model, empirical equations calculating constituent parameters are implemented on the analytical model, which were proposed in the companion paper. The constituent parameters are cyclic brace growth, cyclic buckling load, and the incidence of local buckling and fracture. The analytical model proposed in this study was verified by comparing actual and simulated cyclic curves of brace specimens. It is observed that the proposed model accurately simulates the cyclic behavior of the braces throughout whole response range.
        4,000원
        20.
        2017.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The cyclic behavior of braces is complex due to their asymmetric properties in tension and compression. For accurately simulating the cyclic curves of braces, it is important to predict the major parameters such as cyclic brace growth, cyclic buckling load, incidence local buckling and fracture with good precision. For a given brace, the most accurate values of these parameters can be estimated throughout experiments. However, it is almost impossible to conduct experiments whenever an analytical model has to be established for many braces in building structures due to enormous cost and time. For avoid such difficulties, empirical equations for predicting constituent parameters are proposed from regression analyses based on test results of various braces. This study focuses on rectangular hollow structural section(HSS) steel braces, which have been popularly used in construction practice owing to its sectional efficiency.
        4,000원
        1 2 3