간행물

Journal of the Earthquake Engineering Society of Korea KCI 등재 한국지진공학회논문집

권호리스트/논문검색
이 간행물 논문 검색

권호

제25권 제4호 (통권 제142호) (2021년 7월) 4

1.
2021.07 구독 인증기관 무료, 개인회원 유료
The connection of the steel structure serves to transmit external forces to the main components. The same is true for the behavior of modular systems composed mainly of steel or composite members. In this study, the joint performance of the composite and steel modules proposed was evaluated. The analytical models of the two joint types were constructed and were subjected to cyclic loading to assess the safety and the energy dissipation capacity of the joint types. The analysis results of the joints showed that the joints of the modular systems remain stable when the joint rotation reached the seismic performance limit state of the 0.02 rad required for steel intermediate moment frame. It was also observed that the joint of the composite modular system showed higher energy dissipation capacity compared with the steel modular system.
4,000원
2.
2021.07 구독 인증기관 무료, 개인회원 유료
Existing old reinforced concrete buildings could be vulnerable to earthquakes because they were constructed without satisfying seismic design and detail requirements. In current seismic design standards, the target collapse probability for a given Maximum Considered Earthquake (MCE) ground-shaking hazard is defined as 10% for ordinary buildings. This study aims to estimate the collapse probabilities of a three-story, old, reinforced concrete building designed by only considering gravity loads. Four different seismic design categories (SDC), A, B, C, and D, are considered. This study reveals that the RC building located in the SDC A region satisfies the target collapse probability. However, buildings located in SDC B, C, and D regions do not meet the target collapse probability. Since the degree of exceedance of the target probability increases with an increase in the SDC level, it is imminent to retrofit non-ductile RC buildings similar to the model building. It can be confirmed that repair and reinforcement of old reinforced concrete buildings are required.
4,000원
3.
2021.07 구독 인증기관 무료, 개인회원 유료
In this paper, horizontal seismic responses of a structure built on a sunken mat foundation were compared with those built on a solid embedded mat foundation to investigate the effect of a sunken mat foundation on the horizontal response of a structure. Seismic analyses of a structure laid on the embedded mat foundation were performed by utilizing a pseudo-3D finite element software of P3DASS. Three bedrock earthquake records downloaded from the Pacific Earthquake Engineering Research Center database were scaled to reproduce weak-moderate earthquakes. Weak, medium, and stiff soil layers were considered for the seismic analyses of the structure-foundation-soil system. Parametric studies were performed for foundation radius, foundation embedment depth, and shear wave velocity of a soil layer to investigate their effect on the seismic response spectrum. The study result showed that the design spectrum of a structure built on a sunken mat foundation was similar to that with a solid embedded mat foundation showing a slight difference due to almost the same seismic base motion beneath both embedded foundations.
4,000원
4.
2021.07 구독 인증기관 무료, 개인회원 유료
Conditional spectra (CS) are applied to the seismic fragility assessment of a nuclear power plant (NPP) containment building for comparison with a relevant conventional uniform hazard response spectrum (UHRS). Three different control frequencies are considered in developing conditional spectra. The contribution of diverse magnitudes and epicentral distances is identified from deaggregation for the UHRS at a control frequency and incorporated into the conditional spectra. A total of 30 ground motion records are selected and scaled to simulate the probability distribution of each conditional spectra, respectively. A set of lumped mass stick models for the containment building are built considering nonlinear bending and shear deformation and uncertainty in modeling parameters using the Latin hypercube sampling technique. Incremental dynamic analysis is conducted for different seismic input models in order to estimate seismic fragility functions. The seismic fragility functions and high confidence of low probability of failure (HCLPF) are calculated for different seismic input models and analyzed comparatively.
4,200원