간행물

Journal of the Earthquake Engineering Society of Korea KCI 등재 한국지진공학회논문집

권호리스트/논문검색
이 간행물 논문 검색

권호

제25권 제2호 (통권 제140호) (2021년 3월) 4

1.
2021.03 구독 인증기관 무료, 개인회원 유료
Nuclear power plant’s safety against seismic events is evaluated as risk values by probabilistic seismic safety assessment. The risk values vary by the seismic failure correlation between the structures, systems, and components (SSCs). However, most probabilistic seismic safety assessments idealized the seismic failure correlation between the SSCs as entirely dependent or independent. Such a consideration results in an inaccurate assessment result not reflecting real physical phenomenon. A nuclear power plant’s seismic risk should be calculated with the appropriate seismic failure correlation coefficient between the SSCs for a reasonable outcome. An accident scenario that has an enormous impact on a nuclear power plant’s seismic risk was selected. Moreover, the probabilistic seismic response analyses of a nuclear power plant were performed to derive appropriate seismic failure correlations between SSCs. Based on the analysis results, the seismic failure correlation coefficient between SSCs was derived, and the seismic fragility curve and core damage frequency of the loss of essential power event were calculated. Results were compared with the seismic fragility and core damage frequency of assuming the seismic failure correlations between SSCs were independent and entirely dependent.
4,000원
2.
2021.03 구독 인증기관 무료, 개인회원 유료
Historical records of earthquakes are generally used as a basis to extrapolate the instrumental earthquake catalog in time and space during the probabilistic seismic hazard analysis (PSHA). However, the historical catalogs’ input parameters determined through historical descriptions rather than any quantitative measurements are accompanied by considerable uncertainty in PSHA. Therefore, quantitative assessment to verify the historical earthquake parameters is essential for refining the reliability of PSHA. This study presents an approach and its application to constrain reliable ranges of the magnitude and corresponding epicenter of historical earthquakes. First, ranges rather than specific values of ground motion intensities are estimated at multiple locations with distances between each other for selected historical earthquakes by reviewing observed co-seismic natural phenomena, structural damage levels, or felt areas described in their historical records. Based on specific objective criteria, this study selects only one earthquake (July 24, 1643), which is potentially one of the largest historical earthquakes. Then, ground motion simulations are performed for sufficiently broadly distributed epicenters, with a regular grid to prevent one from relying on strong assumptions. Calculated peak ground accelerations and velocities in areas with the historical descriptions on corresponding earthquakes are converted to intensities with an empirical ground motion-intensity conversion equation to compare them with historical descriptions. For the ground motion simulation, ground motion prediction equations and a frequencywavenumber method are used to consider the effects of possible source mechanisms and stress drop. From these quantitative calculations, reliable ranges of epicenters and magnitudes and the trade-off between them are inferred for the earthquake that can conservatively match the upper and lower boundaries of intensity values from historical descriptions.
4,200원
3.
2021.03 구독 인증기관 무료, 개인회원 유료
This paper presents a real-time, false-pick filter based on deep learning to reduce false alarms of an onsite Earthquake Early Warning (EEW) system. Most onsite EEW systems use P-wave to predict S-wave. Therefore, it is essential to properly distinguish P-waves from noises or other seismic phases to avoid false alarms. To reduce false-picks causing false alarms, this study made the EEWNet Part 1 'False-Pick Filter' model based on Convolutional Neural Network (CNN). Specifically, it modified the Pick_FP (Lomax et al.) to generate input data such as the amplitude, velocity, and displacement of three components from 2 seconds ahead and 2 seconds after the P-wave arrival following one-second time steps. This model extracts log-mel power spectrum features from this input data, then classifies P-waves and others using these features. The dataset consisted of 3,189,583 samples: 81,394 samples from event data (727 events in the Korean Peninsula, 103 teleseismic events, and 1,734 events in Taiwan) and 3,108,189 samples from continuous data (recorded by seismic stations in South Korea for 27 months from 2018 to 2020). This model was trained with 1,826,357 samples through balancing, then tested on continuous data samples of the year 2019, filtering more than 99% of strong false-picks that could trigger false alarms. This model was developed as a module for USGS Earthworm and is written in C language to operate with minimal computing resources.
4,200원
4.
2021.03 구독 인증기관 무료, 개인회원 유료
Seismic designs for Korean nuclear power plants (NPPs) under earthquakes’ design basis are noticed due to the recent earthquake events in Korea and Japan. Japan has developed the technologies and experiences of the NPPs through theoretical research and experimental verification with extensively accumulated measurement data. This paper describes the main features of the design-time history complying with the Japanese seismic design standard. Proper seed motions in the earthquake catalog are used to generate one set of design time histories. A magnitude and epicentral distance specify the amplitude envelope function configuring the shape of the earthquake. Cumulative velocity response spectral values of the design time histories are compared and checked to the target response spectra. Spectral accelerations of the time histories and the multiple-damping target response spectra are also checked to exceed. The generated design time histories are input to the reactor building seismic analyses with fixed-base boundary conditions to calculate the seismic responses. Another set of design time histories is generated to comply with Korean seismic design procedures for NPPs and used for seismic input motions to the same reactor containment building seismic analyses. The responses at the dome apex of the building are compared and analyzed. The generated design time histories will be also applied to subsequent seismic analyses of other Korean standard NPP structures.
4,000원