In order to predict inelastic displacement response without nonlinear dynamic analysis, the equal displacement rule can be used for the structures with longer natural periods than the characteristic period, Tg, of earthquake record. In the period range longer than Tg, peak displacement responses of elastic systems are equal or larger than those of inelastic systems. In the period range shorter than Tg, opposite trend occurs. In the equal displacement rule, it is assumed that peak displacement of inelastic system with longer natural period than Tg equals to that of elastic system with same natural period. The equal displacement rule is very useful for seismic design purpose of structures with longer natural period than Tg. In the period range shorter than Tg, the peak displacement of inelastic system can be simply evaluated from the peak displacement of elastic system by using the inelastic displacement ratio, which is defined as the ratio of the peak inelastic displacement to the peak elastic displacement. Smooth hysteretic behavior is more similar to actual response of real structural system than a piece-wise linear hysteretic behavior such as bilinear or stiffness degrading behaviors. In this paper, the inelastic displacement ratios of the smooth hysteretic behavior system are evaluated for far-fault and near-fault earthquakes. The simple formula of inelastic displacement ratio considering the effect of Tg is proposed.
This research presents that seismic performance of steel moment resisting frame building designed by past provision(UBC, Uniform Building Code) before and after retrofitted with BRB (Buckling-Restrained Brace) was evaluated using response modification factor(R-factor). In addition, the seismic performance of the retrofitted past building was compared with that specified in current provision. The past building considered two different connections: bilinear connection, which was used by structural engineer for building design, and brittle connection observed in past earthquakes. The nonlinear pushover analysis and time history analysis were performed for the analytical models considered in this study. The R-factor was calculated based on the analytical results. When comparing the R-factor of the current provision with the calculated R-factor, the results were different due to the hysteresis characteristics of the connection types. After retrofitted with BRBs, the past buildings with the bilinear connection were satisfied with the seismic performance of the current provision. However, the past buildings with the brittle connection was significantly different with the R-factor of the current provision.
In this study, dynamic characteristics and seismic capacity of the nuclear power plant piping system are evaluated by model test results using multi-platform shake table. The model is 21.2 m long and consists of straight pipes, elbows, and reducers. The stainless steel pipe diameters are 60.3 mm (2 in.) and 88.9 mm (3 in.) and the system was assembled in accordance with ASME code criteria. The dynamic characteristics such as natural frequency, damping and acceleration responses of the piping system were estimated using the measured acceleration, displacement and strain data. The natural frequencies of the specimen were not changed significantly before and after the testing and the failure and leakage of the piping system was not observed until the final excitation. The damping ratio was estimated in the range of 3.13 ~ 4.98 % and it is found that the allowable stress(345 MPa) according to ASME criteria is 2.5 times larger than the measured maximum stress(138 MPa) of the piping system even under the maximum excitation level of this test.
Due to a high level of system ductility, steel moment resisting frames have been widely used for lateral force resisting structural systems in high seismic zones. Earthquake field investigations after Northridge earthquake in 1994 and Kobe earthquake in 1995 have reported that many steel moment resisting frames designed before 1990's had suffered significant damages and structural collapse. In this research, seismic performance assessment of steel moment resisting frames designed in accordance with the previous seismic provisions before 1990's was performed. Buckling-restrained braces and shear walls are considered for seismic retrofit of the reference buildings. Increasing stiffness and strength of the buildings using buckling-restrained braces and shear walls are considered as options to rehabilitate the damaged buildings. Probabilistic seismic performance assessment using fragility analysis results is used for the criteria for determining an appropriate seismic retrofit strategy. The fragility contour method can be used to provide an intial guideline to structural engineers when various structural retrofit options for the damaged buildings are available.
In this paper, analytical models for reinforced concrete shear wall systems designed based on Korean Building Code (KBC2009) are proposed, which have special and semi-special seismic details and are compared with experimental results for a verification of analytical models. In addition, semi-special seismic details aimed to improve constructability and enhance economic efficiency were proposed and evaluated. The analytical models were performed based on nonlinear static and dynamic analysis. Through the nonlinear analyses, two seismic details showed the similar seismic behavior from the cyclic test and the analytical models for the two different seismic details represented the behavior in terms of the initial stiffness, maximum strength and strength degradation. And newly proposed seismic details(semi-special) provided with similar hysterestic behavior as well as the maximum drift.