간행물

Journal of the Earthquake Engineering Society of Korea KCI 등재 한국지진공학회논문집

권호리스트/논문검색
이 간행물 논문 검색

권호

제17권 제5호 (통권 제81호) (2013년 10월) 5

1.
2013.10 구독 인증기관 무료, 개인회원 유료
The seismic performance of school buildings has been a matter of common interest socially and academically. The structural system of the school buildings is representative of the domestic low-rise reinforced concrete moment resisting frames, which apply extensively infills in their masonry walls. The masonry infilled walls are divided into full masonry infill in the transverse direction and partial masonry infill in the longitudinal direction. The masonry infilled walls are usually not included in structural analysis during the design process, but affect significantly the seismic performance because they behave with surrounding frames simultaneously during earthquakes. Many researchers have studied the effect of the masonry infilled walls, but several issues have been missed such as the increase of asymmetry by adding the full masonry infill, the size of the mean strength of the full masonry infill, and short column effect by the partial masonry infill. The issues were analytically investigated and the results showed that they should be checked at least by nonlinear pushover analysis in the seismic performance evaluation process. The results also confirm the weakness of the guideline of Korean Educational Development Institute where the seismic performance is basically assessed without structural analysis.
4,200원
2.
2013.10 구독 인증기관 무료, 개인회원 유료
In order to verify the reliability of numerical site response analysis program, both soil free-field and base rock input motions should be provided. Beside the field earthquake motion records, the most effective testing method for obtaining the above motions is the dynamic geotechnical centrifuge test. However, need is to verify if the motion recorded at the base of the soil model container in the centrifuge facility is the true base rock input motion or not. In this paper, the appropriate input motion measurement method for the verification of seismic response analysis is examined by dynamic geotechnical centrifuge test and using three-dimensional finite difference analysis results. From the results, it appears that the ESB (equivalent shear beam) model container distorts downward the propagating wave with larger magnitude of centrifugal acceleration and base rock input motion. Thus, the distortion makes the measurement of the base rock outcrop motion difficult which is essential for extracting the base rock incident motion. However, the base rock outcrop motion generated by using deconvolution method is free from the distortion effect of centrifugal acceleration.
4,000원
3.
2013.10 구독 인증기관 무료, 개인회원 유료
This work examines the feasibility for estimating existing tensile stress on a stressed wire using the permeability of magnetic flux. A closed magnetic circuit has been constructed to induce magnetic flux inside a steel wire. With different tension stress levels on a wire, the permeability of magnetic flux on the wire has been measured. Two different experimental case studies have been conducted for the examination of sensitivity of permeability of magnetic flux on the stressed wire. One is a varying-length stress test, and the other is a fixed-length stress test. The results show that the permeability of magnetic flux in the varying-length stress test is inversely proportional to the applied stress, while the permeability in the fixed-length stress test is linearly proportional to the applied stress on the stressed wire. It is thus expected that the permeability of magnetic flux on a wire can be a promising indicator for the inspection of its tensile stress.
4,000원
4.
2013.10 구독 인증기관 무료, 개인회원 유료
Friction energy dissipative devices have been increasingly implemented as structural seismic damage protecting systems due to their excellent seismic energy dissipating capacity and high stiffness. This study develops rotational friction energy dissipative devices and verifies experimentally their cyclic response. Based on the understanding of the differences between the traditional linear-motion friction behavior and the rotational friction behavior, the configuration of the frictional surface was determined by investigating the characteristics of the micro-friction behavior. The friction surface suggested in this paper consists of brake-lining pads and stainless steel sheets and is normally stressed by high-strength bolts. Based upon these frictional characteristics of the selected interface, the rotational friction energy dissipative devices were developed. Bolt torque-bearing force tests, rotational friction tests of the suggested friction interfaces were carried out to identify their frictional behavior. Test results show that the bearing force is almost linearly proportional to the applied bolt torque and presents stable cyclic response regardless of the experimental parameters selected this testing program. Finally, cyclic tests of the rotational friction energy dissipative devices were performed to find out their structural characteristics and to confirm their stable cyclic response. The developed friction energy dissipative devices present very stable cyclic response and meet the requirements for displacement-dependent energy dissipative devices prescribed in ASCE/SEI 7-10.
4,000원
5.
2013.10 구독 인증기관 무료, 개인회원 유료
In the Korean Building Code (KBC), the Design Eccentricity involves the torsional amplification factor (TAF), and the inherent and accidental eccentricities. When a structure of less than 6-stories and assigned to seismic design category C or D is designed using equivalent static analysis method, both KBC-2006 and KBC-2009 use the TAF but apply different calculation methods for the of design eccentricity. The design eccentricity in KBC-2006 is calculated by multiplying the sum of inherent eccentricity and accidental eccentricity at each level by a TAF but that in KBC-2009 is calculated by multiplying only the accidental eccentricity by a TAF. In this paper, the damage indices of a building with planar structural irregularity designed by different design eccentricities are compared and the relationship between the earthquake damage and design eccentricity of the building is evaluated. On the basis of this study, the increment of design eccentricity results in the decrement of final eccentricity and global damage index of structure. It is observed that design eccentricity in KBC-2006 reduces the vulnerability of torsional irregular building compared to design eccentricity in KBC-2009.
4,000원