This study was conducted to investigate the growth characteristics of cucumber (Cucumis sativus L. ‘Joeunbaekdadagi’) and tomato (Solanum lycopersicum L. ‘Dotaerang Dia’) seedlings by light intensities and CO2 concentrations in a closed-type plant production system (CPPS). Cucumber and tomato seeds were sown in 50-cell trays and germinated in CPPS at air temperature 25 ± 1°C and relative humidity 50 ± 10% for 4 days. After germination, the CO2 concentrations and light intensity treatment were treated at 500 (ambient), 1,000, and 1,500 μmol·mol-1 and 100, 200, and 300 μmol·m-2·s-1 photosynthetic photon flux density (PPFD), respectively. The leaf area of cucumber showed the highest value in CO2 1,500 μmol·mol-1. However, the leaf area of the tomato had no significant difference in CO2 concentrations and light intensities treatments. In cucumber and tomato both seedlings, the growth and quality such as compactness and leaf area rate were increased with the increase of light intensity, and there were highest in 300 μmol·m-2·s-1. The root surface and number of root tips of cucumber and tomato seedlings were significantly increased with the increase in light intensity. In conclusion, the regulation of the CO2 concentrations and light intensity can control the growth and quality of cucumber and tomato seedlings in CPPS, especially, increasing the light intensity can improve more significantly the growth and quality of seedlings.