PURPOSES : This study aims to analyze the causes of pedestrian traffic accidents on community roads. METHODS : This study collected variables affecting pedestrian traffic accidents on community roads based on field surveys and analyzed them using negative binomial regression and zero-inflated negative binomial regression models. RESULTS : Model analysis results showed that the negative binomial regression model is more suitable than the zero-inflation negative binomial regression model. Additionally, the segment length (m), pedestrian volume (persons/15 min), traffic volume (numbers/15 min.), the extent of illegal parking, pedestrian-vehicle conflict ratio, and one-way traffic (one: residential, two: commercial) were found to influence pedestrian traffic accidents on community roads. Model fitness indicators, comparing actual values with predicted values, showed an MPB of 1.54, MAD of 2.57, and RMSE of 7.03. CONCLUSIONS : This study quantified the factors contributing to pedestrian traffic accidents on community roads by considering both static and dynamic elements. Instead of uniformly implementing measures, such as pedestrian priority zones and facility improvements on community roads, developing diverse strategies that consider various dynamic factors should be considered.