논문 상세보기

Rational design of dysprosium oxide nanochains decorated on graphitic carbon nitride nanosheet for the electrochemical sensing of riboflavin in food samples KCI 등재

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/428206
구독 기관 인증 시 무료 이용이 가능합니다. 5,200원
Carbon Letters (Carbon letters)
한국탄소학회 (Korean Carbon Society)
초록

The nanostructured dysprosium oxide ( Dy2O3) was synthesized by the co-precipitation method and incorporated with graphitic carbon nitride (g-C3N4) using the ultrasonication method. The resultant product is denoted as Dy2O3/ g-C3N4 nanocomposite which was further used for electrochemical sensing of riboflavin (RF). The physicochemical properties of Dy2O3/ g-C3N4 nanocomposite were examined using several characterization techniques. The obtained results exhibit the nanocomposite formation with the preferred elemental compositions, functional groups, crystalline phase and desired surface morphology. The electrocatalytic performance of Dy2O3/ g-C3N4 nanocomposite was scrutinized with a glassy carbon electrode (GCE) via differential pulse voltammetry (DPV) and cyclic voltammetry (CV) techniques with the conventional three-electrode system. The modified electrode distributes more active surface area suggesting high electrocatalytic activity for the RF detection with two linear ranges (0.001–40 μM and 40–150 μM), a low detection limit of 48 nM and sound sensitivity (2.5261 μA μM−1 cm− 2). Further, the designed sensor possesses high selectivity, excellent stability, repeatability and reproducibility. Finally, the fabricated sensor was successfully estimated for the detection of RF in actual food sample analysis using honey and milk with better recovery.

목차
Rational design of dysprosium oxide nanochains decorated on graphitic carbon nitride nanosheet for the electrochemical sensing of riboflavin in food samples
    Abstract
        Graphical abstract
    1 Introduction
    2 Experimental section
        2.1 Materials
        2.2 Instrumentation
        2.3 Synthesis of Dy2O3 Nanochains
        2.4 Synthesis of g-C3N4 nanosheets
        2.5 Synthesis of Dy2O3g-C3N4 nanocomposite
        2.6 Preparation of real samples
        2.7 Preparation of modified Dy2O3g-C3N4 electrode
    3 Results and discussion
        3.1 XRD
        3.2 FT-IR analysis
        3.3 Morphological analysis
        3.4 Optical properties of Dy2O3g-C3N4 nanocomposite
        3.5 XPS analysis
        3.6 Electrocatalytic performance of Dy2O3g-C3N4 nanocomposite
        3.7 Electrocatalysis of RF using Dy2O3g-C3N4 nanocomposites
        3.8 Effect of concentration
        3.9 Effect of scan rate and pH
        3.10 Differential pulse voltammetry
        3.11 Effect of interferences
        3.12 Stability, reproducibility and repeatability
        3.13 Real sample analysis
    4 Conclusion
    Acknowledgements 
    References
저자
  • R. Sangavi(Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, India)
  • M. Keerthana(Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, India)
  • T. Pushpa Malini(Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, India)