The present study estimated rumen fermentation characteristics and greenhouse gas emissions of different forages. Alfalfa, timothy, tall fescue, Italian ryegrass, and rice straw as the main forage sources for Hanwoo were used in the present study. Crude protein was highest in alfalfa but lowest in rice straw (p<0.05). Ether extract was higher in alfalfa and Italian ryegrass than in the other forages (p<0.05). Crude ash was highest in rice straw but lowest in tall fescue (p<0.05). Neutral detergent fiber was highest in tall fescue but lowest in alfalfa (p<0.05). Acid detergent fiber was highest in Italian ryegrass and rice straw but lowest in alfalfa (p<0.05). In vitro digestibilities of dry matter (DMD) and neutral detergent fiber (NDFD) were highest in timothy but lowest in rice straw (p<0.05). Rumen pH was highest (p<0.05) in alfalfa, while ammonia-N was higher (p<0.05) in alfalfa and Italian ryegrass than in the other forages. Total volatile fatty acid was highest (p<0.05) in timothy, while acetate and propionate were highest (p<0.05) in alfalfa and rice straw, respectively. Acetate to propionate ratio was higher (p<0.05) in alfalfa, timothy, and Italian ryegrass than in rice straw. Rice straw had lowest total gas (mL) (p<0.05) but highest its per DMD and NDFD. Rice straw had higher (p<0.05) CO2 (per DMD and NDFD) compared to alfalfa (per DMD and NDFD), timothy (per DMD and NDFD), tall fescue (per NDFD), and Italian ryegrass (per DMD). Again, rice straw had higher (p<0.05) CH4 (per DMD and NDFD) compared to timothy (per DMD and NDFD) and tall fescue (per NDFD). Therefore, this study indicates that timothy has a higher nutrient digestibility and volatile fatty acid in the rumen leading to a reduction of greenhouse gas emission.