논문 상세보기

Study on the Applicability of Event Tree and Fault Tree Analyses to the Systematic Generation of Diversion Paths

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/429721
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Even though it is emphasized to apply safeguards-by-design (SBD) concept in the early phase of the design of a new nuclear facilities, there is no clear guideline or tools for the practical SBD implementation. Generally known approach is trying to review whether there is any conflicts or shortcomings on a conceptual safeguards components in a design information. This study tries to build a systematic tools which can be easily applied to safeguards analysis. In evaluating the safeguards system or performance in a facility, it is essential to analyze the diversion path for nuclear materials. Diversion paths, however, can be either extremely simplified or complicated depending on the level of knowledge and purpose of specific person who do analyze in the field. In the context, this study discusses the applicability of an event tree and fault tree method to generating diversion paths systematically. The essential components constituting the diversion path were reviewed and the logical flow for systematically creating the diversion path was developed. The path generation algorithm based on the facility design components and logical flow as well as the initial information of the nuclear materials and material flows was test using event tree and fault tree analysis tools. The usage and limitation of the applicability of this two logic methods are discussed and idea to incorporate the logic algorithm into the practical program tools is suggested.The results will be used to develop a program module which can systematically generate diversion paths using the event tree and fault tree method.

저자
  • Seong-Kyu Ahn(Korea Atomic Energy Research Institute (KAERI)) Corresponding author
  • Bong Young Kim(Korea Atomic Energy Research Institute (KAERI))
  • Dea-Yong Song(Korea Atomic Energy Research Institute (KAERI))
  • Ho-Dong Kim(Korea Atomic Energy Research Institute (KAERI))