검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 34

        1.
        2023.11 구독 인증기관·개인회원 무료
        Nuclear safety, security, and safeguards (nuclear 3S) are essential components for establishing robust nuclear environments. Nuclear safety is to protect public and environments from radioactive contamination, which can be caused in accidents. Nuclear security is to protect nuclear facilities from terrorism or sabotage, which related to physical a ttacks or insider threats. And nuclear safeguards is to protect nuclear materials from extortion by a state with a purpose of weaponizing activities. When a new nuclear facility is introduced, it is possible to save abundant amount of resources by considering nuclear 3S in an early stage (design phases). Initially, the international atomic energy agency (IAEA) recommended safeguards-by-design (SBD) approach. The concept of SBD gradually expands to nuclear 3S-by-design (3SBD). Though there are differences in purpose and target subject, each nuclear ‘S’ is closely related with others. When introducing a certain technology or equipment in order to enhance one ‘S’, another ‘S’ also get affected. The effect can be synergies or conflicts. For instance, confidential information in nuclear security is required for a safeguards activity. On the contrary, inspection equipment for safeguards can be used for security. Pyroprocessing is a technology for managing used nuclear fuels. As pyroprocessing is a backend fuel cycle technology, a sensitive nuclear technology, safeguards has taken a large portion of nuclear 3S research in an effort to achieve international credibility and nuclear transparency. As mentioned, there are both synergies and conflicts in integrating nuclear 3S. In this study, we investigate potential challenges in applying nuclear 3S integration to pyroprocessing by addressing synergies and conflicts. This approach will suggest required supplementary methods to build the reliable pyroprocessing environment.
        2.
        2023.11 구독 인증기관·개인회원 무료
        Safeguards systems and measures are determined through diversion scenario analysis based on the facility design information submitted to the IAEA when a new nuclear facility is introduced. While the concept of safeguards-by-design (SBD), which considers the safeguards from the design phase for a facility operator to minimize unplanned changes or disruption to facility operations as well as for the IAEA to increase the efficiency and effectiveness in safeguards implementation, has been emphasized for more than a decade, there is no practical tool or guidance on how to apply it. In this study, we develop a diversion path analysis tool and introduce how to apply SBD using it. A diversion path analysis tool was developed based on the elements that constitute diversion and the algorithm generated based on the initial information of facility and nuclear material flow. The results of utilizing the analysis tool depending on a different level of facility information and the safeguards set-ups were compared through examples. Taking a typical light water reactor as an example, the test analyzed the automatic generation of dedicated routes, configuration of safeguards measures, and diversion path analysis. Through this, the application and limitations of the analysis tool are discussed, and ideas for utilization according to the SBD concept and necessary regulatory guidance are proposed. The results of this study are expected to be directly utilized to domestic nuclear control during the regulation process for a construction of new nuclear power systems, and furthermore, to enhance national credibility in the engagement with the IAEA for implementation of safeguards.
        3.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Neutron resonance transmission technique was applied for assaying isotopic fissile materials produced in the pyro-process. In each process of the pyro-process, a different composition of the fissile material is produced. Simulation was basically performed on 235U and 239Pu assay for TRU-RE product, hull waste, and uranium addition. The resonance energies were evaluated for uranium and plutonium in the simulation, and the linearity in the detection response was examined on the fissile content variation. The linear resonance energies were determined for the analysis of 235U and 239Pu on the different fissile materials. For enriched TRU-RE assay, the sample condition was suggested; The sample density, content, and thickness are the key factors to obtain accurate fissile content. The detection signal is discriminated for uranium and plutonium in neutron resonance technique. The transmitted signal for fissile resonance has a direct relation with the content of fissile. The simulation results indicated that the neutron resonance technique is promising to analyze 235U and 239Pu for various types of the pyro-process material. An accurate fissile assay will contribute toward safeguarding the pyro-processing system.
        4,300원
        4.
        2023.05 구독 인증기관·개인회원 무료
        As the use of nuclear energy has been expanded, issues in a spent nuclear fuel management are raised. Several methods have been proposed and developed to manage spent fuels safely and efficiently. One method is to reduce environmental burden in disposal of spent fuels by decreasing volume of high-level waste. A nuclides management process (NMP) is one example. Through this novel process, it is able to separate highly mobile nuclides (ex. iodine, krypton), high thermal emission nuclides (ex. strontium, barium), and optionally, uranium from spent fuels. Since the NMP is a back-end fuel cycle technology, a reliable safeguards system should be employed in the facility. As international atomic energy agency (IAEA) recommends safeguards-by-design (SBD), it is desirable to investigate an appropriate safeguards approach at a step of technology development. Process monitoring (PM) is a complemental safeguards technology for traditional safeguards technologies which based on mass balance. PM traces nuclear materials indirectly but consecutively by using process parameters such as temperature, pressure, and flow of fluid. These parameters are obtainable by installing appropriate sensors. In a respect of SBD, PM is a promising approach to achieve the safeguards goal, the timely detection of diversion of a nuclear material. However, it is necessary to classify useful process parameters from all available signals which provided from PM in order to properly utilize PM. In this study, we investigated application methods of the PM approach to NMP. NMP consists of several unit processes in series. Firstly, we inspected a principle and a feature of each unit process. Based on the results, we evaluated applicability of the PM approach to each unit process according to effectiveness in enhancing safeguardability. Several unit processes were expected that their safeguards are able to be enhanced by using certain process parameters from PM.
        5.
        2023.05 구독 인증기관·개인회원 무료
        Surveillance plays a crucial role in safeguards. Reviewing surveillance data requires a significant number of inspection manpower. As the number of surveillance cameras increases, the demand for such manpower is expected to grow even more. Recently, in the field of security, there has been a development of deep learning models that automatically detect abnormal events from video images, and their usage is expanding. In this study, we used an AutoEncoder-based semi-supervised learning model, which can detect unexpected abnormal events, to detect anomalies in the UCSDped2 dataset and in simulating safeguards-related event videos taken at Dry Mockup facility of KAERI. To improve the model performance, we transformed the video images into two parts: the appearance part, which are sequences of video image frames, and the motion part, which are the pixel value differences of consecutive video frames. In addition, we added memory module to the bottle neck of the AutoEncoder model, and skip connection to enhance the model performance. To evaluate the model performance, we proposed a new evaluation index, which is adequate to the video images of safeguards surveillance in addition to the widely used AUC (Area Under the ROC Curve).
        6.
        2023.05 구독 인증기관·개인회원 무료
        To evaluate the safeguards system or performance in a facility, it is crucial to analyze the diversion path for nuclear materials. However, diversion paths can range from the extremely simplified to the complicated depending on the level of knowledge and the specific person conducting the analysis. This study developed the diversion path analysis tools using an event tree and fault tree method to generating diversion paths systematically. The essential components of the diversion path were reviewed, and a logical flow was developed for systematically creating the diversion path. An algorithm was created based on the facility design components and logical flow, as well as the initial information of the nuclear materials and material flows. The event tree and fault tree analysis tools were used to test the path generation algorithm. The usage and limitations of these two logic methods are discussed, and ideas to incorporate the logic algorithm into practical program tools are suggested. The tests were analyzed on a typical light water reactor as an example, including automatic generation of dedicated pathways, configuration of safeguards measures, and analyzing paths with strategies for avoiding safeguard systems. The results led to the development of a draft pathway analyzer program that can be applied to general nuclear systems. The results of this study will be used to develop a program module that can systematically generate diversion paths using the event tree and fault tree method. It can help to guide and provide practical tools for implementing SBD.
        7.
        2022.10 구독 인증기관·개인회원 무료
        The nuclide management technology for separating high-heat generating/high-mobility/long-lived nuclides from high-level wastes based on the chemical reactions is under development. In order to secure the reliability of nuclear non-proliferation and to implement the effective safeguards, it is necessary to consider the safeguards from the conceptual design phase of the novel technologies. However, there was no experience and research on safeguards for the chemical reaction based nuclide management technology. In order to development the available monitoring techniques for the safeguards of nuclide management technology, the possible diversion scenarios were developed and the material flows of major nuclear materials were analyzed according to the various diversion strategies for each unit process in this study. The diversion strategies in this study is limited to the diversion of nuclear materials according to the change of operational parameters (temperature, chemical reagents, pressures, etc). The nuclear material distribution behaviors under the abnormal conditions were analyzed and compared with normal conditions using the HSC Chemistry. The results will be used to determine the proper signals and feasible techniques to monitor the abnormal operations.
        8.
        2022.10 구독 인증기관·개인회원 무료
        Even though it is emphasized to apply safeguards-by-design (SBD) concept in the early phase of the design of a new nuclear facilities, there is no clear guideline or tools for the practical SBD implementation. Generally known approach is trying to review whether there is any conflicts or shortcomings on a conceptual safeguards components in a design information. This study tries to build a systematic tools which can be easily applied to safeguards analysis. In evaluating the safeguards system or performance in a facility, it is essential to analyze the diversion path for nuclear materials. Diversion paths, however, can be either extremely simplified or complicated depending on the level of knowledge and purpose of specific person who do analyze in the field. In the context, this study discusses the applicability of an event tree and fault tree method to generating diversion paths systematically. The essential components constituting the diversion path were reviewed and the logical flow for systematically creating the diversion path was developed. The path generation algorithm based on the facility design components and logical flow as well as the initial information of the nuclear materials and material flows was test using event tree and fault tree analysis tools. The usage and limitation of the applicability of this two logic methods are discussed and idea to incorporate the logic algorithm into the practical program tools is suggested.The results will be used to develop a program module which can systematically generate diversion paths using the event tree and fault tree method.
        9.
        2022.05 구독 인증기관·개인회원 무료
        In order to effectively and efficiently apply safeguards to new nuclear facilities, it is recommended to apply safeguards-by-design concept. In evaluating the safeguards in the early stage of the design of a facility, it is essential to analyze the diversion path for nuclear materials. This study suggests a simple method which can generate diversion paths. The essential components constituting the diversion path were reviewed and the logical flow for systematically creating the diversion path was developed. The path generation algorithm is based on this components and logical flow as well as the initial information of the nuclear materials and material flows in a planned facilities. The results will be used to develop a program module which can systematically generate diversion paths using the event tree and fault tree method.
        1 2